學習啦 > 學習方法 > 通用學習方法 > 學習方法指導 > 初中生學習數學的方法與技巧

初中生學習數學的方法與技巧

時間: 欣怡1112 分享

初中生學習數學的方法與技巧

  無論是小考,高考亦或是中考,數學都占據重要的地位。所以初中生學習數學需要找到學習方法,以便學好數學。以下是學習啦小編分享給大家的初中生學習數學的方法,希望可以幫到你!

  初中生學習數學的方法

  一:平時的數學學習:

  ○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分鐘.在時間允許的情況下,還可以將練習冊做完.

  ○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節(jié)問題,否則“千里之堤,毀于蟻穴”.

  ○3課后及時復習.寫完作業(yè)后對當天老師講的內容進行梳理,可以適當地做25分鐘左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.

  ○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對于每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到“課后復習”.

  二:期中期末數學復習:

  要將平時的單元檢測卷訂成冊,并且將錯題再做一遍.如果整張試卷考得都不好,那么可以復印將試卷重做一遍.除試卷外,還可以將作業(yè)上的錯題、難題、易錯題重做一遍.另外,自己還可以做2-3張期末模擬卷.

  三:數學考試技巧:

  如果想得高分,在選擇、填空、計算題上是不能丟分的.在考數學的時候思想不能開小差,而且遇到難題時不能想“沒考好怎么辦啊”等內容.在通常情況下,期末考試的難題都是不知道怎么做,但有可能突然明白的那種.遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析,如這次考試有兩個空白的鐘,還有去年七年級期末的幾題填空.這些條件都對你的解題有很大幫助.在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功.大概留35分鐘的時間檢查.

  最終提醒大家:多做題有一定作用,但上課聽講、認真答題及提高準確率、總結經驗才是最重要的.還要將所學的知識用到生活中去,做到學以致用.當你運用數學知識解決了生活中實際問題的時候,你就會感受到學習的樂趣。

  初中生學習數學的習慣

  1、提高初中數學計算正確率的竅門

  真正的去理解解題方法,做完一道題目之后當堂回顧,把解題思路復述出來,并將做錯的題抄在錯題本上,經過一段時間的努力,一定能將解題的錯誤率降低,并養(yǎng)成良好的學習習慣。所以,我們經常說,學數學很容易,秘訣就是:會做的做對,錯過的不要再錯如何提高中考數學的計算的正確率,以下有四種方法以供借鑒:

  第一:要對計算引起足夠的重視

  總以為計算式題比分析應用題容易得多,對一些法則、定律等知識學得比較扎實,計算是件輕而易舉的事情,因而在計算時或過于自信,或注意力不能集中,結果錯誤百出。

  其實,計算正確并不是一件很容易的事。例如計算一道像37×54這樣簡單的式題,要用到乘法、加法的運算法則,經過四次表內乘法和四次一位數加法才能完成。至于計算一道分數、小數四則混合運算式題,需要用到運算順序、運算定律和四則運算的法則等大量的知識,經過數十次基本計算。在這個復雜的過程中,稍有粗心大意就會使全題計算錯誤。

  因此,計算時來不得半點馬虎。

  第二:要按照計算的一般順序進行

  首先,弄清題意,看看有沒有簡單方法、得數保留幾位小數等特別要求;

  其次,觀察題目特點,看看幾步運算,有無簡便算法;

  再次,確定運算順序。在此基礎上利用有關法則、定律進行計算;

  最后,要仔細檢查,看有無錯抄、漏抄、算錯現象。

  第三:要養(yǎng)成認真演算的好習慣

  有些同學由于演算不認真而出現錯誤。數據寫不清,辨認失誤。打草稿時不能按照一定的順序排列豎式,出現上下粘連,左右不分,再加上相同數位不對齊,既不便于檢查,又極易看錯數據。所以一定要養(yǎng)成有序排列豎式,認真書寫數字的良好習慣。

  第四:不能盲目追求速度

  計算又對又快是最理想的目標,但必須知道計算正確是前提條件,是最基本的要求,沒有正確作基礎的高速度是沒有任何價值的。所以,寧愿計算的速度慢一些,也要保證計算正確,提高計算的正確率。

  2、做好數學課堂筆記的五個技巧

  首先,要準備一個專門用來記數學筆記的本子。

  一個專門的本子非常重要。往往同學們會把老師講課時需要記錄的內容隨手記在書上、或者試卷上,這樣時間久了就容易丟失,想要翻看的時候找起來也很費事,甚至找不到。而有一個專門的筆記本,我們就相當于有了一個移動的存儲器,可以方便、快捷地翻看。

  其次,就是如何做好數學筆記。

  有的同學在記筆記的時候喜歡把老師寫的每一個字、講的每一句話都記下來,一堂課下來,緊張忙碌不說,勢必會影響你聽課的效果,一堂課只顧著寫了,而沒有認真去思考、理解,到頭來可能是事倍功半。

  其實做筆記應掌握以下幾個要點:

  第一:記提綱

  老師每次上課都會在黑板的左側寫出本節(jié)課的提綱,這都是老師上課前準備好的本節(jié)課的內容,有了它,可以知道本節(jié)課大概都講了什么內容。

  第二:記附加

  老師在上課的時候有時會加入一些課本沒有的話語,而這些都是對知識的總結,往往也是同學們容易忽視的地方,這些內容可以啟發(fā)學生思維的延展性,并且也利于學生基本技能的提升。

  第三:記例題

  老師每次課上都會有一些比較新穎的例題來為同學們展示,通過例題傳授給學生常用的解題技巧與方法。記錄這些例題,方便同學們對于例題的方法融會貫通,是提高成績的顯著方法。

  第四:記疑問

  有的同學在課堂上聽老師講課,難免有不明白的地方,但是又怕影響大家上課,而不敢提問,想要課下解決,但是很可能下課就忘記了,這樣疑問就積累下來了,到了最后,越積越多,以至于成績總是不提高。如果能把當時的問題記在筆記本上,這樣在下課的時候即使忘記了,回到家一翻筆記也看到了,這個時候及時問家長或者同學。馬上解決問題是重點,不要把問題留給明天。

  第五:記總結

  每學完一段知識,一個新的知識,或者學到新的解題方法,都要把自己的心得記錄下來,然后仔細地去咀嚼、去思考:知識的重點在哪里、新的解題方法好在哪里、以后看到類似的問題怎么去運用。有了這樣的思考,那么今后就不會一看到沒見過的題,就擔心自己是否有能力解決,而是考慮這個問題和我學過的哪個知識相關,找到這個題目基本應該用什么樣的方法去解決。形成自己的解題思路,這樣對于提高學生的本身能力是非常有幫助的。

  最后:如何利用好數學筆記

  數學筆記不能當作一個展示品給別人看,而是要像珍藏品一樣自己時常去看。每天最好給自己安排10分鐘左右的時間把今天所記的筆記認真、仔細地看一遍,鞏固學過的知識。并且在每次的月考、期中、期末前都要認真再看一次,并且把筆記里面的內容前后連結到一起,形成一個知識結果框架,這樣,才能學好數學,提高成績。

  3、初中數學考試的5個小技巧

  方法一:檢查基本概念

  基本概念、法則、公式是同學們檢查時最容易忽視的,因此在解題時極易發(fā)生小錯誤而自己卻檢查數次也發(fā)現不了,所以,做完試卷第一步,在檢查基本題時,我們要仔細讀題,回到概念的定義中去,對癥下藥。

  方法二:對稱檢驗

  對稱的條件勢必導致結論的對稱,利用這種對稱原理可以對答案進行快速檢驗。

  方法三:不變量檢驗

  某些數學問題在變化、變形過程中,其中有的量保持不變,如圖形的平移、旋轉、翻折時,圖形的形狀、大小不變,基本量也不變。利用這種變化過程中的不變量,可以直接驗證某些答案的正確性。

  方法四:特殊情形檢驗

  問題的特殊情況往往比一般情況更易解決,因此通過特殊值、特例來檢驗答案是非??旖莸姆椒ā?/p>

  方法五:答案逆推法

  相信這種方法很多學生都會,在求出題目的答案后,可將答案重新代回題目中,檢驗題目的條件是否還成立。但是這種方法一定要注意,要想想有沒有可能存在多解的情形。

  總而言之,要想提高檢查的次數與效率,又想避免枯燥的重復,就需要一題多解去檢驗。

  一道題,使用原來的方法去做,固然也能發(fā)現錯誤,但是人都是有慣性思維的,很容易就忽視了一些小的錯誤。

  如果在檢查時,我們都盡量去想一些新的方法,那樣,一來可以檢查答案的對錯,二來可以減少機械性重復產生的枯燥感,三來思考新的解法也是鍛煉思維的一種手段,四來能將試卷中的題的作用發(fā)揮到最大,可以說是一舉多得的好措施。

  此外,直接檢查作為最基礎的方法,要重視技巧直接檢驗法就是圍繞原來的解題方法,針對求解的過程及相關結論進行核對、查校、驗算。為配合檢查,首先應正確使用草稿紙。建議大家將草稿紙疊出格痕,按順序演算,并標上題號,方便檢查對照。其次,一定要細心細心再細心,每一個細節(jié)都需要仔細推敲,而不能“想當然”,記住“最安全的地方有時候也是最危險的地方”。

  初中常用的數學思想方法

  1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解體思路,使問題得到解決。

  2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。

  3、分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查,這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。

  4、待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。

  5、配方法:就是把一個代數式設法構造成平方式,然后再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。

  6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。

  7、分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然,則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”

  8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為“由因導果”

  9、演繹法:由一般到特殊的推理方法。

  10、歸納法:由一般到特殊的推理方法。

  11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間,根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。

  初中數學解題方法

  1.配方法

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

  2.因式分解法

  因式分解就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,有提取公因式法、公式法、分組分解法、十字相乘法等等。

  3.換元法

  換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4.判別式法與韋達定理

  一元二次方程根的判別不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

  韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

  5.待定系數法

  在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

  6.構造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。

  7.反證法

  反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

  反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n-1)個;至多有一個/至少有兩個;唯一/至少有兩個。

  歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

  8.面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

  9.幾何變換法

  在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。

  幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

  10.客觀性題的解題方法

  選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。

  要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

  (1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

  (2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

  (3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,余下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

  (5)圖解法:借助于符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。

猜你喜歡:

1.學習數學方法和技巧有哪些

2.初中生怎樣才能學好數學

3.初中生如何學好初中數學

4.怎么學初中數學方法與技巧分析

5.中學生應該怎么學好數學

3839285