學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 教學(xué)方法 > 高中數(shù)學(xué)教學(xué)設(shè)計(jì)具體有哪些

高中數(shù)學(xué)教學(xué)設(shè)計(jì)具體有哪些

時間: 欣怡1112 分享

高中數(shù)學(xué)教學(xué)設(shè)計(jì)具體有哪些

  教學(xué)設(shè)計(jì)是根據(jù)課程標(biāo)準(zhǔn)的要求和教學(xué)對象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設(shè)想和計(jì)劃。以下是學(xué)習(xí)啦小編分享給大家的高中數(shù)學(xué)教學(xué)設(shè)計(jì),希望可以幫到你!

  高中數(shù)學(xué)教學(xué)設(shè)計(jì)《函數(shù)的單調(diào)性》

  一、教學(xué)內(nèi)容解析

  1.教材內(nèi)容及地位

  本節(jié)課是北師大版《數(shù)學(xué)》(必修1)第二章第3節(jié)函數(shù)單調(diào)性的第一課時,主要學(xué)習(xí)用符號語言(不等式)刻畫函數(shù)的變化趨勢(上升或下降)及簡單應(yīng)用.

  它是學(xué)習(xí)函數(shù)概念后研究的第一個、也是最基本的一個性質(zhì),為后繼學(xué)習(xí)奠定了理性思維基礎(chǔ).如研究冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和三角函數(shù)的性質(zhì),包括導(dǎo)函數(shù)內(nèi)容等;在對函數(shù)定性分析、求最值和極值、比較大小、解不等式、函數(shù)零點(diǎn)的判定以及與其他知識的綜合問題上都有重要的應(yīng)用.因此,它是高中數(shù)學(xué)核心知識之一,是函數(shù)教學(xué)的戰(zhàn)略要地.

  2.教學(xué)重點(diǎn)

  函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性.

  3.教學(xué)難點(diǎn)

  函數(shù)單調(diào)性概念的生成,證明單調(diào)性的代數(shù)推理論證.

  二、學(xué)生學(xué)情分析

  1.教學(xué)有利因素

  學(xué)生在初中階段,通過學(xué)習(xí)一次函數(shù)、二次函數(shù)和反比例函數(shù),已經(jīng)對函數(shù)的單調(diào)性有了“形”的直觀認(rèn)識,了解用“隨的增大而增大(減小)”描述函數(shù)圖象的上升(下降)的趨勢.亳州一中實(shí)驗(yàn)班的學(xué)生基礎(chǔ)較好,數(shù)學(xué)思維活躍,具備一定的觀察、辨析、抽象概括和歸納類比等學(xué)習(xí)能力.

  2.教學(xué)不利因素

  本節(jié)課的最大障礙是如何用數(shù)學(xué)符號刻畫一種運(yùn)動變化的現(xiàn)象,從直觀到抽象、從有限到無限是個很大的跨度.而高一學(xué)生的思維正處在從經(jīng)驗(yàn)型向理論型跨越的階段,邏輯思維水平不高,抽象概括能力不強(qiáng).另外,他們的代數(shù)推理論證能力非常薄弱.這些都容易產(chǎn)生思維障礙.

  三、課堂教學(xué)目標(biāo)

  1.理解函數(shù)單調(diào)性的相關(guān)概念.掌握證明簡單函數(shù)單調(diào)性的方法.

  2.通過實(shí)例讓學(xué)生親歷函數(shù)單調(diào)性從直觀感受、定性描述到定量刻畫的自然跨越,體會數(shù)形結(jié)合、分類討論和類比等思想方法.

  3.通過探究函數(shù)單調(diào)性,讓學(xué)生感悟從具體到抽象、從特殊到一般、從局部到整體、從有限到無限、從感性到理性的認(rèn)知過程,體驗(yàn)數(shù)學(xué)的理性精神和力量.

  4.引導(dǎo)學(xué)生參與課堂學(xué)習(xí),進(jìn)一步養(yǎng)成思辨和嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣,鍛煉探究、概括和交流的學(xué)習(xí)能力.

  四、教學(xué)策略分析

  在學(xué)生認(rèn)識函數(shù)單調(diào)性的過程中會存在兩方面的困難:一是如何把“隨的增大而增大(減小)”這一描述性語言“翻譯”為嚴(yán)格的數(shù)學(xué)符號化語言,尤其抽象概括出用“任意”刻畫“無限”現(xiàn)象;二是用定義證明單調(diào)性的代數(shù)推理論證.對高一學(xué)生而言,作差后的變形和因式符號的判斷也有一定的難度.

  為達(dá)成課堂教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我們主要采取以下形式組織學(xué)習(xí)材料:

  1.指導(dǎo)思想.充分發(fā)揮多媒體形象、動態(tài)的優(yōu)勢,借助函數(shù)圖象、表格和幾何畫板直觀演示.在學(xué)生已有認(rèn)知基礎(chǔ)上,通過師生對話自然生成.

  2.在“創(chuàng)設(shè)情境”階段.觀察并分析沙漠某天氣溫變化的趨勢,結(jié)合初中已學(xué)函數(shù)的圖象,讓學(xué)生直觀感受函數(shù)單調(diào)性,明確相關(guān)概念.

  3.在“引導(dǎo)探索”階段.首先創(chuàng)設(shè)認(rèn)知沖突,讓學(xué)生意識到繼續(xù)學(xué)習(xí)的必要性;然后設(shè)置遞進(jìn)式“問題串”,借助多媒體引導(dǎo)學(xué)生對“隨的增大而增大”進(jìn)行探究、辨析、嘗試、歸納和總結(jié),并回顧已有知識經(jīng)驗(yàn),實(shí)現(xiàn)函數(shù)單調(diào)性從“直觀性”到“描述性”再到“嚴(yán)謹(jǐn)性”的跨越.

  4.在“學(xué)以致用”階段.首先通過3個判斷題幫助學(xué)生從正、反兩方面辨析,逐步形成對概念正確、全面而深刻的認(rèn)識.然后教師示范用定義證明函數(shù)單調(diào)性的方法,一起提煉基本步驟,強(qiáng)化變形的方向和符號判定方法.接著請學(xué)生板演實(shí)踐.

  五、教學(xué)過程

  (一)創(chuàng)設(shè)情境,引入課題

  實(shí)例 科考隊(duì)對沙漠氣候進(jìn)行科學(xué)考察,下圖是某天氣溫隨時間的變化曲線.請你根據(jù)曲線圖說說氣溫的變化情況?

  預(yù)設(shè):學(xué)生的關(guān)注點(diǎn)不同,如氣溫的最值,某時刻的氣溫,某時間段氣溫的升降變化(若學(xué)生沒指明時間段,可追問)等.圖象在某區(qū)間上(從左往右)“上升”或“下降”的趨勢反映了函數(shù)的一個基本性質(zhì)──單調(diào)性(板書課題).

  設(shè)計(jì)說明:從科考情境導(dǎo)入新課,了解“早穿棉襖午穿紗,圍著火爐吃西瓜”這一獨(dú)特的沙漠氣候,直觀形象感知?dú)鉁刈兓?,自然引入函?shù)的單調(diào)性.

  函數(shù)是描述事物變化規(guī)律的數(shù)學(xué)模型.如果清楚了函數(shù)的變化規(guī)律,那么就基本把握了相應(yīng)實(shí)物的變化規(guī)律.在事物變化過程中,保存不變的特征就是這個事物的性質(zhì).因此,研究函數(shù)的變化規(guī)律是非常有意義的.

  六、教后反思

  反思“三個理解”的理解程度、教學(xué)策略和落實(shí)情況等.

  高中數(shù)學(xué)教學(xué)設(shè)計(jì):集合與函數(shù)概念

  一、教材分析

  集合語言是現(xiàn)代數(shù)學(xué)的基本語言,使用集合語言,可以簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)的一些內(nèi)容.本章中只將集合作為一種語言來學(xué)習(xí),學(xué)生將學(xué)會使用最基本的集合語言去表示有關(guān)的數(shù)學(xué)對象,發(fā)展運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力.

  函數(shù)的學(xué)習(xí)促使學(xué)生的數(shù)學(xué)思維方式發(fā)生了重大的轉(zhuǎn)變:思維從靜止走向了運(yùn)動、從運(yùn)算轉(zhuǎn)向了關(guān)系.函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,是高中數(shù)學(xué)課程的一個基本主線,有了這條主線就可以把數(shù)學(xué)知識編織在一起,這樣可以使我們對知識的掌握更牢固一些.函數(shù)與不等式、數(shù)列、導(dǎo)數(shù)、立體、解析、算法、概率、選修中的很多專題內(nèi)容有著密切的聯(lián)系.用函數(shù)的思想去理解這些內(nèi)容,是非常重要的出發(fā)點(diǎn).反過來,通過這些內(nèi)容的學(xué)習(xí),加深了對函數(shù)思想的認(rèn)識.函數(shù)的思想方法貫穿于高中數(shù)學(xué)課程的始終.高中數(shù)學(xué)課程中,函數(shù)有許多下位知識,如必修1第二章的冪、指、對函數(shù)數(shù),在必修四將學(xué)習(xí)三角函數(shù).函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.

  二、學(xué)情分析

  1.學(xué)生的作業(yè)與試卷部分缺失,導(dǎo)致易錯問題分析不全面.通過布置易錯點(diǎn)分析的任務(wù),讓學(xué)生意識到保留資料的重要性.

  2.學(xué)生學(xué)基本功較扎實(shí),學(xué)習(xí)態(tài)度較端正,有一定的自主學(xué)習(xí)能力.但是沒有養(yǎng)成及時復(fù)習(xí)的習(xí)慣,有些內(nèi)容已經(jīng)淡忘.通過自主梳理知識,讓學(xué)生感受復(fù)習(xí)的必要性,培養(yǎng)學(xué)生良好的復(fù)習(xí)習(xí)慣.

  3.在研究例4時,對分類的情況研究的不全面.為了突破這個難點(diǎn),應(yīng)用幾何畫板制作了課件,給學(xué)生形象、直觀的感知,體會二次函數(shù)對稱軸與所給的區(qū)間的位置關(guān)系是解決這類問題的關(guān)鍵.

  三、設(shè)計(jì)思路

  本節(jié)課新課中滲透的理念是:“強(qiáng)調(diào)過程教學(xué),啟發(fā)思維,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性”.在本節(jié)課的學(xué)習(xí)過程中,教師沒有把梳理好的知識展示給學(xué)生,而是讓學(xué)生自己進(jìn)行知識的梳理.一方讓學(xué)生體會到知識網(wǎng)絡(luò)化的必要性,另一方面希望學(xué)生養(yǎng)成知識梳理的習(xí)慣.在本節(jié)課中不斷提出問題,采取問題驅(qū)動,引導(dǎo)學(xué)生積極思考,讓學(xué)生全面參與,整個教學(xué)過程尊重學(xué)生的思維方式,引導(dǎo)學(xué)生在“最近發(fā)展區(qū)”發(fā)現(xiàn)問題、解決問題.通過自主分析、交流合作,從而進(jìn)行有機(jī)建構(gòu),解決問題,改變學(xué)生模仿式的學(xué)習(xí)方式.在教學(xué)過程中,滲透了特殊到一般的思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.在教學(xué)過程中通過恰當(dāng)?shù)膽?yīng)用信息技術(shù),從而突破難點(diǎn).

  四、教學(xué)目標(biāo)分析

  (一)知識與技能

  1.了解集合的含義與表示,理解集合間的基本關(guān)系,集合的基本運(yùn)算.

  A:能從集合間的運(yùn)算分析出集合的基本關(guān)系.B:對于分類討論問題,能區(qū)分取交還是取并.

  2.理解函數(shù)的定義,掌握函數(shù)的基本性質(zhì),會運(yùn)用函數(shù)的圖象理解和研究函數(shù)的性質(zhì).

  A:會用定義證明函數(shù)的單調(diào)性、奇偶性.B:會分析函數(shù)的單調(diào)性、奇偶性、對稱性的關(guān)系.

  (二)過程與方法

  1.通過學(xué)生自主知識梳理,了解自己學(xué)習(xí)的不足,明確知識的來龍去脈,把學(xué)習(xí)的內(nèi)容網(wǎng)絡(luò)化、系統(tǒng)化.

  2.在解決問題的過程中,學(xué)生通過自主探究、合作交流,領(lǐng)悟知識的橫、縱向聯(lián)系,體會集合與函數(shù)的本質(zhì).

  (三)情感態(tài)度與價值觀

  在學(xué)生自主整理知識結(jié)構(gòu)的過程中,認(rèn)識到材料整理的必要性,從而形成及時反思的學(xué)習(xí)習(xí)慣,獨(dú)立獲取數(shù)學(xué)知識的能力.在解決問題的過程中,學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心.在例4的解答過程中,滲透動靜結(jié)合的思想,讓學(xué)生養(yǎng)成理性思維的品質(zhì).

  五、重難點(diǎn)分析

  重點(diǎn):掌握知識之間的聯(lián)系,洞悉問題的考察點(diǎn),能選擇合適的知識與方法解決問題.

  難點(diǎn):含參問題的討論,函數(shù)性質(zhì)之間的關(guān)系.

  六.知識梳理(約10分鐘)

  提出問題

  問題1:把本章的知識結(jié)構(gòu)用框圖形式表示出來.

  問題2:一個集合中的元素應(yīng)當(dāng)是確定的、互異的、無序的,你能結(jié)合具體實(shí)例說明集合的這些基本要求嗎?

  問題3:類比兩個數(shù)的關(guān)系,思考兩個集合之間的基本關(guān)系.類比兩個數(shù)的運(yùn)算,思考兩個集合之間的基本運(yùn)算,交、并、補(bǔ).

  問題4:通過本章學(xué)習(xí),你對函數(shù)概念有什么新的認(rèn)識和體會嗎?

  請結(jié)合具體實(shí)例分析,表示函數(shù)的三種方法,每一種方法的特點(diǎn).

  問題5:分析研究函數(shù)的方向,它們之間的聯(lián)系.

  在前一次晚自習(xí)上,學(xué)生相互展示自己的結(jié)果,通過相互討論,每組提供最佳的方案.在自己的原有方案的基礎(chǔ)上進(jìn)行補(bǔ)充與完善.

  七、教學(xué)反思

  在復(fù)習(xí)課中,教師要充分調(diào)動學(xué)生學(xué)習(xí)的自主性,讓學(xué)生獨(dú)立制定出適合自己的知識結(jié)構(gòu)、整理出自己在本章學(xué)習(xí)中出現(xiàn)的問題.在課堂上,學(xué)生通過交流與合作,體會解決問題成功的喜悅.從而養(yǎng)成良好的學(xué)習(xí)習(xí)慣、樹立信心.感受知識的橫向聯(lián)系與縱向聯(lián)系,洞悉知識的本質(zhì)、問題的根源,從而形成深刻的印象,少出現(xiàn)或避免出現(xiàn)類似的問題.通過分析知識的來龍去脈,明確知識的用途.通過典型題分析,回顧主干知識,重要的數(shù)學(xué)思想,感受知識與數(shù)學(xué)思想的有機(jī)融合.

  高中數(shù)學(xué)《圓的一般方程》教學(xué)設(shè)計(jì)

  教學(xué)內(nèi)容

  《圓的一般方程》

  教學(xué)目標(biāo)

  知識與技能:

  過程與方法

  情感態(tài)度與價值觀

  教學(xué)重難點(diǎn)

  重點(diǎn):掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

  難點(diǎn):二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

  【教師資格證考試】

  【高中數(shù)學(xué)《圓的一般方程》教學(xué)設(shè)計(jì)】

  【微博@中小學(xué)教師資格證考試】

  教學(xué)內(nèi)容

  《圓的一般方程》

  教學(xué)過程

  【教師資格證考試】

  【高中數(shù)學(xué)《圓的一般方程》教學(xué)設(shè)計(jì)》

  【微博@中小學(xué)教師資格證考試】

  教學(xué)內(nèi)容

  《圓的一般方程》

  (四)小結(jié)作業(yè)

  板書設(shè)計(jì)

  師生共同總結(jié)今天這節(jié)課所學(xué)知識點(diǎn)

  作業(yè):分必做題和選做題
猜你喜歡:

1.高中數(shù)學(xué)的聽課需要注意的方面介紹

2.高中數(shù)學(xué)教學(xué)教案設(shè)計(jì)有哪些

3.高中數(shù)學(xué)課堂教學(xué)方法略談

4.高中數(shù)學(xué)教育教學(xué)案例論文

5.學(xué)好高中數(shù)學(xué)的方法技巧有哪些

3801494