初一數(shù)學(xué)知識點整理
學(xué)數(shù)學(xué)要在理解的基礎(chǔ)上去做題,學(xué)會數(shù)學(xué)關(guān)鍵在于個人的悟性,除了上課認(rèn)真聽講、課后做匹配練習(xí)外,還需要練就獨(dú)立解題能力與總結(jié)反思能力,學(xué)會以不變應(yīng)萬變。這次小編給大家整理了初一數(shù)學(xué)知識點整理,供大家閱讀參考。
初一數(shù)學(xué)知識點整理
一:角的種類
角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負(fù)角:按照順時針方向旋轉(zhuǎn)而成的角叫做負(fù)角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角?;閷斀堑膬蓚€角相等。
初一數(shù)學(xué)必考知識點:一元一次方程組的解法
一般步驟:
第一步:去分母,在方程兩邊同乘以所有分母的最小公倍數(shù).注意:分子要加括號,不要漏乘不含有分母的項;
第二步:去括號,先去小括號,再去中括號,最后去大括號.注意:不要漏乘括號內(nèi)各項,若括號前面是“ - ”,去括號后括號內(nèi)各項都要變號;
第三步:移項,把含有未知數(shù)的項移到方程的一邊,其他項移到另一邊.注意:移項要變號,不移的項不變號,移項時不要漏項;
第四步:合并同類項,把方程化為 ax=b(a≠0)的形式.注意:系數(shù)相加,字母部分不變;
第五步:系數(shù)化為 1,把方程兩邊同除以未知數(shù)的系數(shù) a,得到方程的解 x={frac{a}}(a≠0).注意:不要把分子、分母位置顛倒.
二:整式的加減
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨(dú)的一個數(shù)字或字母也是單項式)。
2.系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。所有字母的指數(shù)之和叫做這個單項式的次數(shù)。任何一個非零數(shù)的零次方等于1.
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。
5.常數(shù)項:不含字母的項叫做常數(shù)項。
6.多項式的排列
(1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
(2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
7.多項式的排列時注意:
(1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。
(2)有兩個或兩個以上字母的多項式,排列時,要注意:
a.先確認(rèn)按照哪個字母的指數(shù)來排列。
b.確定按這個字母向里排列,還是向外排列。
(3)整式:
單項式和多項式統(tǒng)稱為整式。
8. 多項式的加法:
多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。
9.同類項:所含字母相同,并且相同字母的次數(shù)也分別相同的項叫做同類項。
10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。
初一數(shù)學(xué)知識點
第一章 有理數(shù)
1.1 正數(shù)與負(fù)數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“—”的數(shù)叫負(fù)數(shù)(negative number)。
與負(fù)數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2 有理數(shù)
正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)(integer),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)(fraction)。
整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負(fù)數(shù),絕對值大的反而小。
1.3 有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。
1.4 有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。 mì
求n個相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個大于10的數(shù)表示成a×10的n次方的形式,用的就是科學(xué)計數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數(shù)的等式。
方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。
等式的性質(zhì):
1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
2.2 從古老的代數(shù)書說起——一元一次方程的討論(1)
把等式一邊的某項變號后移到另一邊,叫做移項。
第三章 圖形認(rèn)識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運(yùn)算
如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。
如果兩個角的和等于180度(平角),就說這兩個叫互為補(bǔ)角(supplementary angle),即其中每一個角是另一個角的補(bǔ)角。
等角(同角)的補(bǔ)角相等。
等角(同角)的余角相等。
初一數(shù)學(xué)知識點整理4-6章
第四章 數(shù)據(jù)的收集與整理
收集、整理、描述和分析數(shù)據(jù)是數(shù)據(jù)處理的基本過程。
第五章 相交線與平行線
5.1 相交線
對頂角(vertical angles)相等。
過一點有且只有一條直線與已知直線垂直(perpendicular)。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
5.2 平行線
經(jīng)過直線外一點,有且只有一條直線與這條直線平行(parallel)。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。
5.3 平行線的性質(zhì)
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內(nèi)錯角相等。
兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。
判斷一件事情的語句,叫做命題(proposition)。
第六章 平面直角坐標(biāo)系
6.1 平面直角坐標(biāo)系
含有兩個數(shù)的詞來表示一個確定的位置,其中兩個數(shù)各自表示不同的含義,我們把這種有順序的兩個數(shù)a和b組成的數(shù)對,叫做有序數(shù)對(ordered pair)。
初一數(shù)學(xué)知識點整理7-10章
第七章 三角形
7.1 與三角形有關(guān)的線段
三角形(triangle)具有穩(wěn)定性。
7.2 與三角形有關(guān)的角
三角形的內(nèi)角和等于180度。
三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。
三角形的一個外角大于與它不相鄰的任何一個內(nèi)角
7.3 多邊形及其內(nèi)角和
n邊形內(nèi)角和等于:(n-2)?180度
多邊形(polygon)的外角和等于360度。
第八章 二元一次方程組
8.1 二元一次方程組
方程中含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程(linear equations of two unknowns) 。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組(system of linear equations of two unknowns)。
使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
8.2 消元
將未知數(shù)的個數(shù)由多化少、逐一解決的想法,叫做消元思想。
第九章 不等式與不等式組
9.1 不等式
用小于號或大于號表示大小關(guān)系的式子,叫做不等式(inequality)。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質(zhì):
不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。
不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
9.3 一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組(linear inequalities of one unknown)。
第十章 實數(shù)
10.1 平方根
如果一個正數(shù)x的平方等于a,那么這個正數(shù)x叫做a的算術(shù)平方根(arithmetic square root),2是根指數(shù)。
a的算術(shù)平方根讀作“根號a”,a叫做被開方數(shù)(radicand)。
0的算術(shù)平方根是0。
如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根或二次方根(square root) 。
求一個數(shù)a的平方根的運(yùn)算,叫做開平方(extraction of square root)。
10.2 立方根
如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根或三次方根(cube root)。
求一個數(shù)的立方根的運(yùn)算,叫做開立方(extraction of cube root)。
10.3 實數(shù)
無限不循環(huán)小數(shù)又叫做無理數(shù)(irrational number)。
有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)(real number)。
數(shù)學(xué)的學(xué)習(xí)方法
1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。 建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
2、及時了解、掌握常用的數(shù)學(xué)思想和方法,學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動思想,轉(zhuǎn)化思想,變換思想。
3、逐步形成 “以我為主”的學(xué)習(xí)模式 數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動地參與學(xué)習(xí)過程,養(yǎng)成實事求是的科學(xué)態(tài)度,獨(dú)立思考、勇于探索的創(chuàng)新精神。
4、記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。
初一數(shù)學(xué)知識點整理相關(guān)文章: