學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級(jí)數(shù)學(xué) >

初中數(shù)學(xué)基本定理匯編

時(shí)間: 於寶21274 分享

  不知道大家了不了解數(shù)學(xué)的一些基本定理呢?掌握這些基本定理可以幫助同學(xué)們減少很多復(fù)習(xí)的時(shí)間,從而更好的解題,下面就是小編給大家?guī)淼某踔袛?shù)學(xué)基本定理匯編,希望能幫助到大家!

  數(shù)學(xué)基本定理

  1、過兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等

  4、同角或等角的余角相等

  5、過一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯(cuò)角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯(cuò)角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理三角形兩邊的和大于第三邊

  16、推論三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

  18、推論1直角三角形的兩個(gè)銳角互余

  19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  23、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

  31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35、推論1三個(gè)角都相等的三角形是等邊三角形

  36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上

  45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48、定理四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等

  53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等

  54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分

  56、平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2矩形的對(duì)角線相等

  62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2對(duì)角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1菱形的四條邊都相等

  65、菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71、定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72、定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

  73、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對(duì)角線相等

  76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77、對(duì)角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80、推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83、(1)比例的基本性質(zhì):

  如果a:b=c:d,那么ad=bc

  如果ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):

  如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):

  如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對(duì)應(yīng)線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93、判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96、性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2相似三角形周長的比等于相似比

  98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 ?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112、推論2圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116、定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  118、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121、①直線L和⊙O相交d﹤r

  ②直線L和⊙O相切d=r

 ?、壑本€L和⊙O相離d﹥r(jià)

  122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  125、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對(duì)邊的和相等

  128、弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

  129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

  131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132、切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

  133、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135、①兩圓外離d﹥R+r

 ?、趦蓤A外切d=R+r

  ③兩圓相交R-r﹤d﹤R+r(R﹥r(jià))

 ?、軆蓤A內(nèi)切d=R-r(R﹥r(jià))

  ⑤兩圓內(nèi)含d﹤R-r(R﹥r(jià))

  136、定理相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理把圓分成n(n≥3):

  (1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

  (2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  142、正三角形面積√3a/4a表示邊長

  143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計(jì)算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  常用數(shù)學(xué)公式

  乘法與因式分解

  a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式

  |a+b|≤|a|+|b|

  |a-b|≤|a|+|b|

  |a|≤b-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  -b+√(b2-4ac)/2a

  -b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系

  X1+X2=-b/a

  X1*X2=c/a

  注:韋達(dá)定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根

  b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac

  某些數(shù)列前n項(xiàng)和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理:

  a/sinA=b/sinB=c/sinC=2R

  注:其中R表示三角形的外接圓半徑

  余弦定理

  b2=a2+c2-2accosB

  注:角B是邊a和邊c的夾角

199281