初三數(shù)學(xué)知識點(diǎn)歸納
求學(xué)的三個條件是:多觀察、多吃苦、多研究。每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,也是要記、要背、要講練的。下面是小編給大家整理的初三數(shù)學(xué)知識點(diǎn),希望對大家有所幫助。
初三新學(xué)期數(shù)學(xué)知識點(diǎn)蘇教版
一、圓的定義
1、以定點(diǎn)為圓心,定長為半徑的點(diǎn)組成的圖形。
2、在同一平面內(nèi),到一個定點(diǎn)的距離都相等的點(diǎn)組成的圖形。
二、圓的各元素
1、半徑:圓上一點(diǎn)與圓心的連線段。
2、直徑:連接圓上兩點(diǎn)有經(jīng)過圓心的線段。
3、弦:連接圓上兩點(diǎn)線段(直徑也是弦)。
4、?。簣A上兩點(diǎn)之間的曲線部分。半圓周也是弧。
(1)劣?。盒∮诎雸A周的弧。
(2)優(yōu)?。捍笥诎雸A周的弧。
5、圓心角:以圓心為頂點(diǎn),半徑為角的邊。
6、圓周角:頂點(diǎn)在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長。
三、圓的基本性質(zhì)
1、圓的對稱性
(1)圓是圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是對稱圖形。
2、垂徑定理。
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
初三新學(xué)期數(shù)學(xué)知識點(diǎn)
求內(nèi)切圓的半徑r。
分析:先證得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
14、(1)弦切角:角的頂點(diǎn)在圓周上,角的一邊是圓的切線,另一邊是圓的弦。
BC切⊙O于點(diǎn)B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圓的兩條弦AB與CD相交于點(diǎn)P,則PA?PB=PC?PD。
(3)切割線定理。
如圖,PA切⊙O于點(diǎn)A,PBC是⊙O的割線,則PA2=PB?PC。
(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。
15、圓與圓的位置關(guān)系。
(1)外離:d>r1+r2,交點(diǎn)有0個;
外切:d=r1+r2,交點(diǎn)有1個;
相交:r1-r2
內(nèi)切:d=r1-r2,交點(diǎn)有1個;
內(nèi)含:0≤d
(2)性質(zhì)。
相交兩圓的連心線垂直平分公共弦。
相切兩圓的連心線必經(jīng)過切點(diǎn)。
16、圓中有關(guān)量的計算。
(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。
(2)扇形的面積用S表示。
(3)圓錐的側(cè)面展開圖是扇形。
r為底面圓的半徑,a為母線長。
初三數(shù)學(xué)上冊知識點(diǎn)歸納
解一元二次方程
配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2)系數(shù)化1:將二次項系數(shù)化為1
3)移項:將常數(shù)項移到等號右側(cè)
4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方
5)變形:將等號左邊的代數(shù)式寫成完全平方形式
6)開方:左右同時開平方
7)求解:整理即可得到原方程的根
公式法
公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當(dāng)b2-4ac≥0時,把各項系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初三數(shù)學(xué)知識點(diǎn)歸納相關(guān)文章:
★ 初三數(shù)學(xué)知識點(diǎn)考點(diǎn)歸納總結(jié)
★ 最新初三數(shù)學(xué)知識點(diǎn)總結(jié)大全
★ 初三數(shù)學(xué)知識點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)中考復(fù)習(xí)重點(diǎn)章節(jié)知識點(diǎn)歸納
★ 九年級上冊數(shù)學(xué)知識點(diǎn)歸納整理