學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)通用

高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)通用

時(shí)間: 楚琪0 分享

2022高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)通用

總結(jié)是事后對(duì)某一階段的學(xué)習(xí)或工作情況作加以回顧檢查并分析評(píng)價(jià)的書(shū)面材料,它是增長(zhǎng)才干的一種好辦法,讓我們好好寫(xiě)一份總結(jié)吧。如何把總結(jié)做到重點(diǎn)突出呢?下面是小編給大家?guī)?lái)的高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)通用,以供大家參考!

高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)通用

對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

(6)顯然冪函數(shù)無(wú)界。

高一數(shù)學(xué)知識(shí)點(diǎn)歸納人教版

集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。

例如:1、分散的人或事物聚集到一起;使聚集:緊急~。

2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專(zhuān)門(mén)研究集合的理論叫做集合論??低?Cantor,G.F.P.,1845年—1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀、公理的方法來(lái)下“定義”。集合

集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱(chēng)為單體),這一整體就是集合。組成一集合的那些對(duì)象稱(chēng)為這一集合的元素(或簡(jiǎn)稱(chēng)為元)。

精選高一數(shù)學(xué)知識(shí)點(diǎn)

圓的方程定義:

圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

直線(xiàn)和圓的位置關(guān)系:

1、直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。

①Δ>0,直線(xiàn)和圓相交。②Δ=0,直線(xiàn)和圓相切。③Δ<0,直線(xiàn)和圓相離。

方法二是幾何的觀點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較。

①dR,直線(xiàn)和圓相離。

2、直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程。求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

3、直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題。

切線(xiàn)的性質(zhì)

⑴圓心到切線(xiàn)的距離等于圓的半徑;

⑵過(guò)切點(diǎn)的半徑垂直于切線(xiàn);

⑶經(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);

⑷經(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;

當(dāng)一條直線(xiàn)滿(mǎn)足

(1)過(guò)圓心;

(2)過(guò)切點(diǎn);

(3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。

切線(xiàn)的判定定理

經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

切線(xiàn)長(zhǎng)定理

從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(zhǎng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。

高一數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)通用相關(guān)文章:

高一數(shù)學(xué)有用必考知識(shí)點(diǎn)歸納

高一數(shù)學(xué)??贾R(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)單元重要知識(shí)點(diǎn)

高一數(shù)學(xué)知識(shí)點(diǎn)大全

高一數(shù)學(xué)知識(shí)點(diǎn)梳理歸納

高一數(shù)學(xué)知識(shí)點(diǎn)小歸納

高一數(shù)學(xué)必會(huì)必考的相關(guān)知識(shí)點(diǎn)分析

高一數(shù)學(xué)必會(huì)必備知識(shí)點(diǎn)總結(jié)歸納

高一數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)

高一數(shù)學(xué)考試基礎(chǔ)知識(shí)點(diǎn)

1443696