學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

時(shí)間: 燕純0 分享

高三會(huì)教給我們奮斗,每個(gè)人都有無(wú)盡的潛力,每一個(gè)人都有無(wú)窮的提升空間,不經(jīng)過(guò)一年血戰(zhàn),也許我們永遠(yuǎn)發(fā)現(xiàn)不了自己身上蘊(yùn)藏的能量。所以高三注定是精彩的一頁(yè),接下來(lái)是小編為大家整理的高三數(shù)學(xué)知識(shí)點(diǎn),希望大家喜歡!

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

1.有關(guān)平行與垂直(線(xiàn)線(xiàn)、線(xiàn)面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線(xiàn)線(xiàn)平行(垂直)、線(xiàn)面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

2.判定兩個(gè)平面平行的方法

(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);

(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線(xiàn)都平行于另一個(gè)平面;

(3)證明兩平面同垂直于一條直線(xiàn)。

3.兩個(gè)平面平行的主要性質(zhì):

(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;

(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線(xiàn)必平行于另一個(gè)平面”;

(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行”;

(4)一條直線(xiàn)垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

(5)夾在兩個(gè)平行平面間的平行線(xiàn)段相等;

(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

一個(gè)推導(dǎo)

利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個(gè)防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類(lèi)討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_,則{an}是等比數(shù)列.

(2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_,則數(shù)列{an}是等比數(shù)列.

(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成an=c·qn(c,q均是不為0的常數(shù),n∈N_,則{an}是等比數(shù)列.

注:前兩種方法也可用來(lái)證明一個(gè)數(shù)列為等比數(shù)列.

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

1.數(shù)列的定義、分類(lèi)與通項(xiàng)公式

(1)數(shù)列的定義:

①數(shù)列:按照一定順序排列的一列數(shù).

②數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).

(2)數(shù)列的分類(lèi):

分類(lèi)標(biāo)準(zhǔn)類(lèi)型滿(mǎn)足條件

項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限

無(wú)窮數(shù)列項(xiàng)數(shù)無(wú)限

項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N

_

遞減數(shù)列an+1<an< p="">

常數(shù)列an+1=an

(3)數(shù)列的通項(xiàng)公式:

如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.

2.數(shù)列的遞推公式

如果已知數(shù)列{an}的首項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與它的前一項(xiàng)an-1(n≥2)(或前幾項(xiàng))間的關(guān)系可用一個(gè)公式來(lái)表示,那么這個(gè)公式叫數(shù)列的遞推公式.

3.對(duì)數(shù)列概念的理解

(1)數(shù)列是按一定“順序”排列的一列數(shù),一個(gè)數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無(wú)序性.因此,若組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個(gè)數(shù)列.

(2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.

4.數(shù)列的函數(shù)特征

數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N_或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項(xiàng)公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_.

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

a(1)=a,a(n)為公差為r的等差數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

可用歸納法證明。

n=1時(shí),a(1)=a+(1-1)r=a。成立。

假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r

則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

通項(xiàng)公式也成立。

因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2

同樣,可用歸納法證明求和公式。

a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

通項(xiàng)公式:

a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

可用歸納法證明等比數(shù)列的通項(xiàng)公式。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1時(shí),

S(n)=a[1-r^n]/[1-r]

r=1時(shí),

S(n)=na.

同樣,可用歸納法證明求和公式。

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)相關(guān)文章

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高三數(shù)學(xué)知識(shí)點(diǎn)筆記

高三數(shù)學(xué)都有哪些知識(shí)點(diǎn)

高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高三數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)

高三數(shù)學(xué)的基礎(chǔ)知識(shí)點(diǎn)歸納分析

高三數(shù)學(xué)高考考試復(fù)習(xí)知識(shí)點(diǎn)歸納

高三數(shù)學(xué)第一輪復(fù)習(xí)知識(shí)點(diǎn)

高三數(shù)學(xué)補(bǔ)習(xí)知識(shí)點(diǎn)總結(jié)

高三文科數(shù)學(xué)??贾R(shí)點(diǎn)整理歸納

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)

高三會(huì)教給我們奮斗,每個(gè)人都有無(wú)盡的潛力,每一個(gè)人都有無(wú)窮的提升空間,不經(jīng)過(guò)一年血戰(zhàn),也許我們永遠(yuǎn)發(fā)現(xiàn)不了自己身上蘊(yùn)藏的能量。所以高三注定是精彩的一頁(yè),接下來(lái)是小編為大家整理的高三數(shù)學(xué)知識(shí)點(diǎn),希望大家
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
419999