關(guān)于數(shù)學(xué)知識點(diǎn)高三
關(guān)于數(shù)學(xué)知識點(diǎn)高三大全
沒有人會因?qū)W問而成為智者。學(xué)問或許能由勤奮得來,而機(jī)智與智慧卻有懶于天賦,你們覺得呢?下面是小編給大家?guī)淼年P(guān)于數(shù)學(xué)知識點(diǎn)高三,以供大家參考!
關(guān)于數(shù)學(xué)知識點(diǎn)高三
高考數(shù)學(xué)必考知識點(diǎn)歸納必修一:
1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
高考數(shù)學(xué)必考知識點(diǎn)歸納必修二:
1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。
這部分知識是高一學(xué)生的難點(diǎn),比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22---27分
2、直線方程:高考時不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程
4、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分。
高考數(shù)學(xué)必考知識點(diǎn)歸納必修四:
5、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查。
6、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分。
7、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
高考數(shù)學(xué)必考知識點(diǎn)歸納文科選修:
選修1--1:重點(diǎn):高考占30分
8、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)
選修1--2:
9、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)。
高考數(shù)學(xué)必考知識點(diǎn)歸納理科選修:
選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)
選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點(diǎn)需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計:
高考的知識板塊
集合與簡單邏輯:5分或不考
函數(shù):高考60分:①、指數(shù)函數(shù)②對數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn))
平面向量與解三角形
立體幾何:22分左右
不等式:(線性規(guī)則)5分必考
數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題
平面解析幾何:(30分左右)
計算原理:10分左右
概率統(tǒng)計:12分----17分
復(fù)數(shù):5分
高三數(shù)學(xué)知識點(diǎn)總結(jié)
1.等差數(shù)列的定義
如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.
2.等差數(shù)列的通項公式
若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.
3.等差中項
如果A=(a+b)/2,那么A叫做a與b的等差中項.
4.等差數(shù)列的常用性質(zhì)
(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).
(2)若{an}為等差數(shù)列,且m+n=p+q,
則am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.
(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.
(5)S2n-1=(2n-1)an.
(6)若n為偶數(shù),則S偶-S奇=nd/2;
若n為奇數(shù),則S奇-S偶=a中(中間項).
注意:
一個推導(dǎo)
利用倒序相加法推導(dǎo)等差數(shù)列的前n項和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
兩個技巧
已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.
(1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進(jìn)行對稱設(shè)元.
四種方法
等差數(shù)列的判斷方法
(1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);
(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項公式法:驗證an=pn+q;
(4)前n項和公式法:驗證Sn=An2+Bn.
注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.
高三數(shù)學(xué)知識點(diǎn)歸納
1.數(shù)列的定義、分類與通項公式
(1)數(shù)列的定義:
①數(shù)列:按照一定順序排列的一列數(shù).
②數(shù)列的項:數(shù)列中的每一個數(shù).
(2)數(shù)列的分類:
分類標(biāo)準(zhǔn)類型滿足條件
項數(shù)有窮數(shù)列項數(shù)有限
無窮數(shù)列項數(shù)無限
項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N_
遞減數(shù)列an+1
常數(shù)列an+1=an
(3)數(shù)列的通項公式:
如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式.
2.數(shù)列的遞推公式
如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式.
3.對數(shù)列概念的理解
(1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性.因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列.
(2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.
4.數(shù)列的函數(shù)特征
數(shù)列是一個定義域為正整數(shù)集N_(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_).
關(guān)于數(shù)學(xué)知識點(diǎn)高三相關(guān)文章:
★ 高三數(shù)學(xué)知識點(diǎn)考點(diǎn)總結(jié)大全
★ 關(guān)于高三數(shù)學(xué)的重要知識點(diǎn)
★ 高三數(shù)學(xué)知識點(diǎn)總結(jié)大全
★ 高三數(shù)學(xué)復(fù)習(xí)重要知識點(diǎn)