學習啦 > 學習方法 > 高中學習方法 > 高考輔導資料 > 高考數(shù)學必考題型及答題技巧

高考數(shù)學必考題型及答題技巧

時間: 夢熒0 分享

高考數(shù)學必考題型及答題技巧匯總

數(shù)學這個學科可能是很多人從小到大心中的恐懼,因為它復雜難理解,尤其是文科生,以下是小編整理的一些高考數(shù)學必考題型及答題技巧,歡迎閱讀參考。

高考數(shù)學必考題型及答題技巧

高考數(shù)學答題注意事項

(1)填寫好全部考生信息,檢查試卷有無問題;

(2)調(diào)節(jié)情緒,盡快進入考試狀態(tài),可解答那些一眼就能看得出結(jié)論的簡單選擇或填空題(一旦解出,信心倍增,情緒立即穩(wěn)定);

(3)對于不能立即作答的題目,可一邊通覽,一邊粗略地分為a、b兩類:a類指題型比較熟悉、容易上手的題目;b類指題型比較陌生、自我感覺有困難的題目,做到心中有數(shù)。

高考數(shù)學填空題答題技巧

1、三角變換與三角函數(shù)的性質(zhì)問題

解題方法:①不同角化同角;②降冪擴角 ;③化f(x)=Asin(ωx+φ)+h ;④結(jié)合性質(zhì)求解。

答題步驟:

①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。

②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質(zhì)確定條件。

③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。

2、解三角形問題

解題方法:

(1) ①化簡變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。

(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

答題步驟:

①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉(zhuǎn)化的方向。

②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化。

③求結(jié)果。

3、數(shù)列的通項、求和問題

解題方法:①先求某一項,或者找到數(shù)列的關(guān)系式;②求通項公式;③求數(shù)列和通式。

答題步驟:

①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關(guān)系,即找數(shù)列的遞推公式。

②求通項:根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。

③定方法:根據(jù)數(shù)列表達式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

④寫步驟:規(guī)范寫出求和步驟。

4、離散型隨機變量的均值與方差

解題思路:

(1)①標記事件;②對事件分解;③計算概率。

(2)①確定ξ取值;②計算概率;③得分布列;④求數(shù)學期望。

答題步驟:

①定元:根據(jù)已知條件確定離散型隨機變量的取值。

②定性:明確每個隨機變量取值所對應(yīng)的事件。

③定型:確定事件的概率模型和計算公式。

④計算:計算隨機變量取每一個值的概率。

⑤列表:列出分布列。

⑥求解:根據(jù)均值、方差公式求解其值。

5、圓錐曲線中的范圍問題

解題思路;①設(shè)方程;②解系數(shù);③得結(jié)論。

答題步驟:

①提關(guān)系:從題設(shè)條件中提取不等關(guān)系式。

②找函數(shù):用一個變量表示目標變量,代入不等關(guān)系式。

③得范圍:通過求解含目標變量的不等式,得所求參數(shù)的范圍。

6、解析幾何中的探索性問題

解題思路:①一般先假設(shè)這種情況成立(點存在、直線存在、位置關(guān)系存在等);②將上面的假設(shè)代入已知條件求解;③得出結(jié)論。

答題步驟:

①先假定:假設(shè)結(jié)論成立。

②再推理:以假設(shè)結(jié)論成立為條件,進行推理求解。

③下結(jié)論:若推出合理結(jié)果,經(jīng)驗證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。

數(shù)學??碱}答題套路

恒成立問題或是它的反面,能夠轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復不遺漏。

圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓維曲線相交問題,若與弦的中點相關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式。

求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點、列式、化簡(注意去掉不符合條件的特殊點)。

求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可。

三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍。

1903876