高考數(shù)學(xué)??嫉闹匾酱笕?/h1>
時(shí)間:
業(yè)鴻0由 分享
高考數(shù)學(xué)??嫉闹匾綒w納大全
高中數(shù)學(xué)有很多重要的公式,在高考中常考的公式主要有函數(shù)、導(dǎo)數(shù)、數(shù)列、向量、圓等。下面是小編為大家整理的關(guān)于高考數(shù)學(xué)??嫉闹匾酱笕?,歡迎大家來(lái)閱讀。
高中數(shù)學(xué)常用公式大全
1.y=c y'=0
2. y=α^μ y'=μα^(μ-1)
3. y=a^x y'=a^x lna y=e^x y'=e^x
4. y=loga,x y'=loga,e/x y=lnx y'=1/x
5. y=sinx y'=cosx
6. y=cosx y'=-sinx
7. y=tanx y'=(secx)^2=1/(cosx)^2
8. y=cotx y'=-(cscx)^2=-1/(sinx)^2
9. y=arc sinx y'=1/√(1-x^2)
10.y=arc cosx y'=-1/√(1-x^2)
11.y=arc tanx y'=1/(1+x^2)
12.y=arc cotx y'=-1/(1+x^2)
13.y=sh x y'=ch x
14.y=ch x y'=sh x
15.y=thx y'=1/(chx)^2
16.y=ar shx y'=1/√(1+x^2)
高考數(shù)學(xué)必考公式知識(shí)點(diǎn)
1.適用條件:[直線過(guò)焦點(diǎn)],必有ecosA=(x-1)/(x+1),其中A為直線與焦點(diǎn)所在軸夾角,是銳角。
x為分離比,必須大于1。注上述公式適合一切圓錐曲線。如果焦點(diǎn)內(nèi)分(指的是焦點(diǎn)在所截線段上),用該公式;如果外分(焦點(diǎn)在所截線段延長(zhǎng)線上),右邊為(x+1)/(x-1),其他不變。
2.函數(shù)的周期性問(wèn)題(記憶三個(gè)):
(1)若f(x)=-f(x+k),則T=2k;
(2)若f(x)=m/(x+k)(m不為0),則T=2k;
(3)若f(x)=f(x+k)+f(x-k),則T=6k。注意點(diǎn):a.周期函數(shù),
周期必?zé)o限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。
3.關(guān)于對(duì)稱問(wèn)題(無(wú)數(shù)人搞不懂的問(wèn)題)總結(jié)如下:
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對(duì)稱軸為x=(a+b)/2
(2)函數(shù)y=f(a+x)與y=f(b-x)的圖像關(guān)于x=(b-a)/2對(duì)稱
(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關(guān)于(a,b)中心對(duì)稱
4.函數(shù)奇偶性:
(1)對(duì)于屬于R上的奇函數(shù)有f(0)=0
(2)對(duì)于含參函數(shù),奇函數(shù)沒(méi)有偶次方項(xiàng),偶函數(shù)沒(méi)有奇次方項(xiàng)
(3)奇偶性作用不大,一般用于選擇填空
5.數(shù)列爆強(qiáng)定律:
1.等差數(shù)列中:S奇=na中,例如S 13 =13a 7
2.等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
3.等比數(shù)列中,上述2中各項(xiàng)在公比不為負(fù)一時(shí)成等比,在q=-1時(shí),未必成立
4.等比數(shù)列爆強(qiáng)公式:S(n+m)=S(m)+q?mS(n)可以迅速求q
6.數(shù)列的終極利器,特征根方程。(如果看不懂就算了)。
首先介紹公式:對(duì)于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),則數(shù)列通項(xiàng)公式為an=(a1-x)p?(n-1)+x,這是一階特征根方程的運(yùn)用。二階有點(diǎn)麻煩,且不常用。所以不贅述。希望同學(xué)們牢記上述公式。當(dāng)然這種類型的數(shù)列可以構(gòu)造(兩邊同時(shí)加數(shù))
7.函數(shù)詳解補(bǔ)充:
(1)復(fù)合函數(shù)奇偶性:內(nèi)偶則偶,內(nèi)奇同外
(2)復(fù)合函數(shù)單調(diào)性:同增異減
(3)重點(diǎn)知識(shí)關(guān)于三次函數(shù):恐怕沒(méi)有多少人知道三次函數(shù)曲線其實(shí)是中心對(duì)稱圖形。它有一個(gè)對(duì)稱中心,求法為二階導(dǎo)后導(dǎo)數(shù)為0,根x即為中心橫坐標(biāo),縱坐標(biāo)可以用x帶入原函數(shù)界定。另外,必有唯一一條過(guò)該中心的直線與兩旁相切。
8.常用數(shù)列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2記憶方法
前面減去一個(gè)1,后面加一個(gè),再整體加一個(gè)2
9.適用于標(biāo)準(zhǔn)方程(焦點(diǎn)在x軸)爆強(qiáng)公式
k橢=-{(b?)xo}/{(a?)yo}k雙={(b?)xo}/{(a?)yo}k拋=p/yo
注:(xo,yo)均為直線過(guò)圓錐曲線所截段的中點(diǎn)。
10.強(qiáng)烈推薦一個(gè)兩直線垂直或平行的必殺技
已知直線L1:a1x+b1y+c1=0 直線L2:a2x+b2y+c2=0
若它們垂直:(充要條件)a1a2+b1b2=0;
若它們平行:(充要條件)a1b2=a2b1且a1c2≠a2c1[這個(gè)條件為了防止兩直線重合)
注:以上兩公式避免了斜率是否存在的麻煩,直接必殺!
高考數(shù)學(xué)重點(diǎn)復(fù)習(xí)公式
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/aX1__X2=c/a 注:韋達(dá)定理
判別式b2-4a=0 注:方程有相等的兩實(shí)根
b2-4ac>0 注:方程有一個(gè)實(shí)根
b2-4ac<0 注:方程有共軛復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項(xiàng)和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n__2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2p__2=2pyx2=-2py
直棱柱側(cè)面積S=c__h
斜棱柱側(cè)面積S=c'__h
正棱錐側(cè)面積S=1/2c__h'
正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l
球的表面積S=4pi__r2
圓柱側(cè)面積S=c__h=2pi__h
圓錐側(cè)面積S=1/2__c__l=pi__r__l
弧長(zhǎng)公式l=a__ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__l__r
錐體體積公式V=1/3__S__H圓錐體體積公式V=1/3__pi__r2h
斜棱柱體積V=S'L 注:其中S'是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式;V=s__h圓柱體V=pi__r2h
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圓半徑
余弦定理b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
拋物線標(biāo)準(zhǔn)方程y^2=2pxy^2=-2p__^2=2pyx^2=-2py
直棱柱側(cè)面積S=c__h斜棱柱側(cè)面積S=c'__h
正棱錐側(cè)面積S=1/2c__h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi__r2
圓柱側(cè)面積S=c__h=2pi__h圓錐側(cè)面積S=1/2__c__l=pi__r__l
弧長(zhǎng)公式l=a__ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__l__r
錐體體積公式V=1/3__S__H
斜棱柱體積V=S'L 注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式V=s__h圓柱體V=pi__r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B))
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
2+4+6+8+10+12+14+…+(2n)=n(n+1)5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
常用導(dǎo)數(shù)公式
1、y=c(c為常數(shù))y'=0
2、y=x^ny'=nx^(n-1)
3、y=a^xy'=a^xlna
4、y=e^xy'=e^x
5、y=logaxy'=logae/x
6、y=lnxy'=1/x
7、y=sinxy'=cosx
8、y=cosxy'=-sinx
9、y=tanxy'=1/cos^2x
10、y=cotxy'=-1/sin^2x
11、y=arcsinxy'=1/√1-x^2
12、y=arccosxy'=-1/√1-x^2
13、y=arctanxy'=1/1+x^2
14、y=arccotxy'=-1/1+x^2