學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初一學(xué)習(xí)方法 > 七年級(jí)數(shù)學(xué) >

銳角三角函數(shù)的定義

時(shí)間: 文瓊21297 分享

  銳角的本質(zhì)是任意角的集合與一個(gè)比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的,其定義域?yàn)檎麄€(gè)實(shí)數(shù)域。另一種定義是在直角三角形中,但并不完全。下面是小編為大家整理的關(guān)于銳角三角函數(shù)的定義,希望對(duì)您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!

  銳角三角函數(shù)的定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。

  正弦等于對(duì)邊比斜邊

  余弦等于鄰邊比斜邊

  正切等于對(duì)邊比鄰邊

  余切等于鄰邊比對(duì)邊

  正割等于斜邊比鄰邊

  余割等于斜邊比對(duì)邊

  正切與余切互為倒數(shù)

  它的本質(zhì)是任意角的集合與一個(gè)比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的,其定義域?yàn)檎麄€(gè)實(shí)數(shù)域。另一種定義是在直角三角形中,但并不完全?,F(xiàn)代數(shù)學(xué)把它們描述成無(wú)窮數(shù)列的極限和微分方程的解,將其定義擴(kuò)展到復(fù)數(shù)系。

  由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。

  它有六種基本函數(shù)(初等基本表示):

  函數(shù)名正弦余弦正切余切正割余割

  在平面直角坐標(biāo)系xOy中,從點(diǎn)O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點(diǎn)的坐標(biāo)為(x,y)有

  正弦函數(shù)sinθ=y/r

  余弦函數(shù)cosθ=x/r

  正切函數(shù)tanθ=y/x

  余切函數(shù)cotθ=x/y

  正割函數(shù)secθ=r/x

  余割函數(shù)cscθ=r/y

  (斜邊為r,對(duì)邊為y,鄰邊為x。)

  以及兩個(gè)不常用,已趨于被淘汰的函數(shù):

  正矢函數(shù)versinθ=1-cosθ

  余矢函數(shù)coversθ=1-sinθ

  同角三角函數(shù)間的關(guān)系:

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  ·積的關(guān)系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  ·倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  直角三角形ABC中,

  角A的正弦值就等于角A的對(duì)邊比斜邊,

  余弦等于角A的鄰邊比斜邊

  正切等于對(duì)邊比鄰邊,

  余切等于鄰邊比對(duì)邊

  互余角的三角函數(shù)間的關(guān)系:

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.


相關(guān)文章:

1.九年級(jí)數(shù)學(xué)銳角三角函數(shù)的簡(jiǎn)單應(yīng)用教學(xué)反思

2.初三數(shù)學(xué)教程視頻:銳角三角函數(shù)

3.九年級(jí)數(shù)學(xué)老師工作計(jì)劃

4.初中數(shù)學(xué)教師工作反思

5.高二數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)與學(xué)習(xí)方法總結(jié)

382632