初一數(shù)學下冊單元知識點總結
學習這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學習方法其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是小編給大家整理的一些初一數(shù)學的知識點,希望對大家有所幫助。
初一數(shù)學知識點
1、有理數(shù):1.正負數(shù)概念;2.整數(shù)和分數(shù)統(tǒng)稱為有理數(shù);3.數(shù)軸;4.絕對值;5.有理數(shù)加減乘除法法則;6.有理數(shù)混合運算。
2、整式的加減:1.單項式;2.單項式的系數(shù);3.單項式的次數(shù);4.多項式以及常數(shù)項;5.多項式的次數(shù);6.合并同類項。
3、一元一次方程:1.方程。2.一元一次方程。3.等式的性質1:等式兩邊加(或減)同一個數(shù)(或式子),結果仍相等。4.等式的性質2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結果仍相等。5.把等式一邊的某項變號后移到另一邊,叫做移項。6.應用:行程問題:s=v×t工程問題:工作總量=工作效率×時間盈虧問題:利潤=售價-成本利率=利潤÷成本×100%售價=標價×折扣數(shù)×10%儲蓄利潤問題:利息=本金×利率×時間本息和=本金+利息
4、圖形初步認識:1.幾何圖形。2.立體圖形。3.平面圖形。4.相應立體圖形的展開圖。5.幾何體簡稱為體。6.包圍著體的是面,面有平的面和曲的面兩種。7.面與面相交的地方形成線,線和線相交的地方是點。8.點動成面,面動成線,線動成體。9.經過探究可以得到一個基本事實:經過兩點有一條直線,并且只有一條直線。簡述為:兩點確定一條直線(公理)。10.交點、中點。11.兩點之間,線段最短。(公理)12.連接兩點間的線段的長度,叫做這兩點的距離。13.角∠也是一種基本的幾何圖形。14.把一個周角360等分,每一份就是1度的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。15.從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。16.如果兩個角的和等于90°(直角),就是說這兩個叫互為余角,即其中的每一個角是另一個角的余角。17.如果兩個角的和等于180°(平角),就說這兩個角互為補角,即其中一個角是另一個角的補角。18.等角的補角相等,等角的余角相等。
北師大版初中一年級數(shù)學上冊知識點
二元一次方程組
1.二元一次方程:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個解.
2.二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對于一個應用題設出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個數(shù)與未知數(shù)個數(shù)相等時,一般可求出未知數(shù)的值;
(3)對于方程組,若方程個數(shù)比未知數(shù)個數(shù)少一個時,一般求不出未知數(shù)的值,但總可以求出任何兩個未知數(shù)的關系.
一元一次不等式(組)
1.不等式:用不等號,把兩個代數(shù)式連接起來的式子叫不等式.
2.不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數(shù)軸上表示不等式的解集時,要注意空圈和實點.
七年級下冊數(shù)學知識點
【概率】
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發(fā)生的事件。也就是指該事件每次一定發(fā)生,不可能不發(fā)生,即發(fā)生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發(fā)生的事件。也就是指該事件每次都完全沒有機會發(fā)生,即發(fā)生的可能性為零。
4、不確定事件:事先無法肯定會不會發(fā)生的事件,也就是說該事件可能發(fā)生,也可能不發(fā)生,即發(fā)生的可能性在0和1之間。
二、等可能性:是指幾種事件發(fā)生的可能性相等。
1、概率:是反映事件發(fā)生的可能性的大小的量,它是一個比例數(shù),一般用P來表示,P(A)=事件A可能出現(xiàn)的結果數(shù)/所有可能出現(xiàn)的結果數(shù)。
2、必然事件發(fā)生的概率為1,記作P(必然事件)=1;
3、不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;
4、不確定事件發(fā)生的概率在0—1之間,記作0
三、幾何概率
1、事件A發(fā)生的概率等于此事件A發(fā)生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發(fā)生在每個單位面積上的概率是相同的。
2、求幾何概率:
(1)首先分析事件所占的面積與總面積的關系;
(2)然后計算出各部分的面積;
(3)最后代入公式求出幾何概率。
初一數(shù)學復習方法
復習方法總結
1回歸書本,梳理章節(jié)概念公式、性質定理等
就像蓋房子,房子的地基是否扎實穩(wěn)固。比如我們在復習課中,要求孩子們默寫公式等,記憶單項式、多項式、整式的概念,以及冪的運算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因為不夠熟練,怕出錯,所以就用最復雜的公式推導一遍,費時費力,還總錯,而且重要的公式更加生疏。
比如知識點填空:
知識點填空
我們的孩子在學校大題普遍做的多,考試也能拿到一些分數(shù),但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎么定義,性質定理有幾條,判定定理有幾條?他們之間有什么聯(lián)系和區(qū)別?在這一章中,哪些地方一定要加“同一平面內”這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關系,角的關系,以及三角形的重要線段和它們的性質,等腰等邊三角形的性質,這些一定是期末選擇題的備選項。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節(jié)常見的熱點問題歸納練習。
我們的數(shù)學、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數(shù)孩子要考的題型和難度,學校每天的作業(yè)以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應用?通過這樣一遍的分析,孩子們都會發(fā)現(xiàn),其實考來考去,就是那幾種題型反復的出,反復的練。這是非常高效的學習方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經常和大家說的,遇見拐點,就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學好這些模型相等于我們是拿著工具箱考試,效率很高,比起其他同學,省去了推導的過程,速度又快,又準確。當然前提要掌握好基礎內容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點,題型都掌握了,計算也不會出錯,那你們考試一定沒有問題,除了有些學校本來要求考很難,比如壓軸題,不在于做的多,而是在精練,你做完之后不斷的復盤,用自己的語言說出思路來,找找看里面的邏輯關系。
4、堅持改錯題
把整個學期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標記星號,問老師問同學,直到會了為止,下周繼續(xù)改,看自己是否真的懂了,對于錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復的看思路,才能在考試的時候避免在同類型的題上反復錯。
初一數(shù)學下冊單元知識點總結相關文章: