學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級數(shù)學(xué) > 學(xué)好初二數(shù)學(xué)的方法有哪些

學(xué)好初二數(shù)學(xué)的方法有哪些

時間: 巧綿0 分享

學(xué)好初二數(shù)學(xué)的方法有哪些

初中數(shù)學(xué)是一個整體,相對而言,初一數(shù)學(xué)知識點雖然很多,但都比較簡單。很多同學(xué)在學(xué)校里的學(xué)習(xí)中感受不到壓力,慢慢積累了很多小問題,這些問題在進入初二,遇到困難(如學(xué)科的增加、難度的加深)后,就凸現(xiàn)出來,在初二的時候應(yīng)該怎么學(xué)好數(shù)學(xué)?

學(xué)好初二數(shù)學(xué)的方法有哪些

一、該記的記,該背的背,不要以為理解了就行

其實數(shù)學(xué)中的知識點是很多的,要想要學(xué)好數(shù)學(xué)首先就要記住它的定理公式,法則定義等,只有記住這些基礎(chǔ)的知識點你遇到題目的時候才能狗知道自己碰到的是什么題,應(yīng)該用什么樣的公式去計算,如果記不住非容易失分。

二、幾個重要的數(shù)學(xué)思想

1、“方程”的思想

數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度x時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學(xué)會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實中的大量實際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進而學(xué)好其它形式的方程。

所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進而用解方程的方法去解決它。

2、“數(shù)形結(jié)合”的思想

大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。

3、“對應(yīng)”的思想

“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運用“對應(yīng)”的思想和方法來解題。初二、初三我們還將看到數(shù)軸上的點與實數(shù)之間的一一對應(yīng),直角坐標(biāo)平面上的點與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)?!皩?yīng)”的思想在今后的學(xué)習(xí)中將會發(fā)揮越來越大的作用。

三、自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路

在學(xué)習(xí)新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。

我們在課堂上聽老師講解,不光是學(xué)習(xí)新知識,更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對數(shù)學(xué)的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學(xué)生物理學(xué)得好,不是我教出來的,而是他們自己悟出來的。當(dāng)然,校長是謙虛的,但他說明了一個道理,學(xué)生不能被動地學(xué)習(xí),而應(yīng)主動地學(xué)習(xí)。一個班里幾十個學(xué)生,同一個老師教,差異那么大,這就是學(xué)習(xí)主動性問題了。

自學(xué)能力越強,悟性就越高。隨著年齡的增長,同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強。只有主動學(xué)習(xí)的人才能不斷的吸收知識才能讓自己不斷的成長。

四、自信才能自強

在考試中,總是看見有些同學(xué)的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當(dāng)然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎么知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也同樣要先分析、研究,找到正確的思路后才向你講授。不敢去做稍為復(fù)雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當(dāng)重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學(xué)過的知識把它解出來。要敢于去做題,要善于去做題。這就叫做“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。

解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來屬于自己的春天。

學(xué)好初二數(shù)學(xué)的方法有哪些相關(guān)文章:

1.學(xué)好初一數(shù)學(xué)的方法都有哪些

2.初二的數(shù)學(xué)學(xué)習(xí)方法有哪些

3.學(xué)好初中三年數(shù)學(xué)的方法有哪些

4.初二學(xué)習(xí)數(shù)學(xué)的好方法

5.初中數(shù)學(xué)學(xué)習(xí)方法有哪些

6.初二數(shù)學(xué)常用的幾種經(jīng)典解題方法

7.學(xué)好初中數(shù)學(xué)的10個方法

8.初二如何學(xué)好數(shù)學(xué)

9.初二數(shù)學(xué)學(xué)習(xí)方法技巧整理

11282