學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級(jí)數(shù)學(xué)>

初二數(shù)學(xué)知識(shí)點(diǎn)部編版

時(shí)間: 躍瀚0 分享

對(duì)世界上的一切學(xué)問(wèn)與知識(shí)的掌握也并非難事,只要持之以恒地學(xué)習(xí),努力掌握規(guī)律,達(dá)到熟悉的境地,就能融會(huì)貫通,運(yùn)用自如。學(xué)習(xí)需要持之以恒。下面是小編給大家整理的一些初二數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。

初二上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)歸納

分式方程

一、理解定義

1、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的兩邊都乘以最簡(jiǎn)公分母,約去分母,化成整式方程。

(2)解這個(gè)整式方程。

(3)把整式方程的根帶入最簡(jiǎn)公分母,看結(jié)果是不是為零,使最簡(jiǎn)公分母為零的根是原方程的增根,必須舍去。

(4)寫出原方程的根。

“一化二解三檢驗(yàn)四總結(jié)

3、增根:分式方程的增根必須滿足兩個(gè)條件:

(1)增根是最簡(jiǎn)公分母為0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化簡(jiǎn)的先化簡(jiǎn)(2)方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程;

(3)解整式方程;(4)驗(yàn)根;

注:解分式方程時(shí),方程兩邊同乘以最簡(jiǎn)公分母時(shí),最簡(jiǎn)公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。

分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。

5、分式方程解實(shí)際問(wèn)題

步驟:審題—設(shè)未知數(shù)—列方程—解方程—檢驗(yàn)—寫出答案,檢驗(yàn)時(shí)要注意從方程本身和實(shí)際問(wèn)題兩個(gè)方面進(jìn)行檢驗(yàn)。

二、軸對(duì)稱圖形:

一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠完全重合。這條直線叫做對(duì)稱軸?;ハ嘀睾系狞c(diǎn)叫做對(duì)應(yīng)點(diǎn)。

1、軸對(duì)稱:

兩個(gè)圖形沿一條直線對(duì)折,其中一個(gè)圖形能夠與另一個(gè)圖形完全重合。這條直線叫做對(duì)稱軸。互相重合的點(diǎn)叫做對(duì)應(yīng)點(diǎn)。

2、軸對(duì)稱圖形與軸對(duì)稱的區(qū)別與聯(lián)系:

(1)區(qū)別。軸對(duì)稱圖形討論的是“一個(gè)圖形與一條直線的對(duì)稱關(guān)系”;軸對(duì)稱討論的是“兩個(gè)圖形與一條直線的對(duì)稱關(guān)系”。

(2)聯(lián)系。把軸對(duì)稱圖形中“對(duì)稱軸兩旁的部分看作兩個(gè)圖形”便是軸對(duì)稱;把軸對(duì)稱的“兩個(gè)圖形看作一個(gè)整體”便是軸對(duì)稱圖形。

八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

一、在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

二、平面直角坐標(biāo)系及有關(guān)概念

1、平面直角坐標(biāo)系

在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

3、點(diǎn)的坐標(biāo)的概念

對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。

點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。

4、不同位置的點(diǎn)的坐標(biāo)的特征

(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

點(diǎn)P(x,y)在第一象限:x;0,y;0

點(diǎn)P(x,y)在第二象限:x;0,y;0

點(diǎn)P(x,y)在第三象限:x;0,y;0

點(diǎn)P(x,y)在第四象限:x;0,y;0

(2)、坐標(biāo)軸上的點(diǎn)的特征

點(diǎn)P(x,y)在x軸上,y=0,x為任意實(shí)數(shù)

點(diǎn)P(x,y)在y軸上,x=0,y為任意實(shí)數(shù)

點(diǎn)P(x,y)既在x軸上,又在y軸上,x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)

(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

初二數(shù)學(xué)學(xué)習(xí)方法

一該記的記,該背的背,不要以為理解了就行

有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語(yǔ)、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說(shuō)你只講對(duì)了一半。數(shù)學(xué)同樣也離不開記憶。

因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個(gè)公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個(gè)公式,將會(huì)對(duì)今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會(huì)大量地用到這三個(gè)公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個(gè)因式分解公式就是由這三個(gè)乘法公式推出來(lái)的,二者是相反方向的變形。

對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問(wèn)題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒(méi)有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。

1、“方程”的思想

數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度.時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過(guò)方程里的已知量求出未知量的過(guò)程就是解方程。

物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過(guò)解方程來(lái)求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。

所謂的“方程”思想就是對(duì)于數(shù)學(xué)問(wèn)題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。

2、“數(shù)形結(jié)合”的思想

大千世界,“數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問(wèn)題的一門課,叫做“解析幾何”。

初二數(shù)學(xué)知識(shí)點(diǎn)部編版相關(guān)文章

八年級(jí)數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)

八年級(jí)學(xué)習(xí)方法指導(dǎo)

部編版八年級(jí)下冊(cè)第八課知識(shí)點(diǎn)整理

最好的學(xué)習(xí)方法推薦

部編版八年級(jí)下冊(cè)第七課知識(shí)點(diǎn)整理

學(xué)習(xí)經(jīng)驗(yàn)總結(jié)

初二數(shù)學(xué)知識(shí)點(diǎn)部編版

對(duì)世界上的一切學(xué)問(wèn)與知識(shí)的掌握也并非難事,只要持之以恒地學(xué)習(xí),努力掌握規(guī)律,達(dá)到熟悉的境地,就能融會(huì)貫通,運(yùn)用自如。學(xué)習(xí)需要持之以恒。下面是小編給大家整理的一些初二數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。初
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 部編版初二數(shù)學(xué)知識(shí)點(diǎn)梳理
    部編版初二數(shù)學(xué)知識(shí)點(diǎn)梳理

    天才就是勤奮曾經(jīng)有人這樣說(shuō)過(guò)。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大

  • 初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)2021
    初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)2021

    課堂臨時(shí)報(bào)佛腳,不如課前預(yù)習(xí)好。其實(shí)任何學(xué)科都是一樣的,學(xué)習(xí)任何一門學(xué)科,勤奮都是最好的學(xué)習(xí)方法,沒(méi)有之一,書山有路勤為徑。下面是小編給

  • 初二數(shù)學(xué)知識(shí)點(diǎn)歸納梳理
    初二數(shù)學(xué)知識(shí)點(diǎn)歸納梳理

    學(xué)習(xí)從來(lái)無(wú)捷徑,循序漸進(jìn)登高峰。如果說(shuō)學(xué)習(xí)一定有捷徑,那只能是勤奮,因?yàn)榕τ肋h(yuǎn)不會(huì)騙人。學(xué)習(xí)需要勤奮,做任何事情都需要勤奮。下面是小編

  • 初二數(shù)學(xué)課文知識(shí)點(diǎn)歸納
    初二數(shù)學(xué)課文知識(shí)點(diǎn)歸納

    知識(shí)是一座寶庫(kù),而實(shí)踐就是開啟寶庫(kù)的鑰匙。學(xué)習(xí)任何學(xué)科,不僅需要大量的記憶,還需要大量的練習(xí),從而達(dá)到鞏固知識(shí)的效果。下面是小編給大家整

1125116