學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 中考輔導(dǎo) > 中考數(shù)學(xué)復(fù)習(xí)知識:實數(shù)

中考數(shù)學(xué)復(fù)習(xí)知識:實數(shù)

時間: 淑航658 分享

中考數(shù)學(xué)復(fù)習(xí)知識:實數(shù)

  在復(fù)習(xí)數(shù)學(xué)的時候,我們要掌握好方法。下面是學(xué)習(xí)啦小編收集整理的中考數(shù)學(xué)《實數(shù)》復(fù)習(xí)知識以供大家學(xué)習(xí)。

  一、重要概念

  1.數(shù)的分類及概念

  數(shù)系表:

  說明:“分類”的原則:1)相稱(不重、不漏)2)有標(biāo)準(zhǔn)

  2.非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

  常見的非負(fù)數(shù)有:

  性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。

  3.倒數(shù):①定義及表示法

 ?、谛再|(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。

  4.相反數(shù):①定義及表示法

 ?、谛再|(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

  5.數(shù)軸:①定義(“三要素”)

 ?、谧饔茫篈.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點(diǎn)與實數(shù)的一一對應(yīng)關(guān)系。

  6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

  定義及表示:

  奇數(shù):2n-1

  偶數(shù):2n(n為自然數(shù))

  7.絕對值:①定義(兩種):

  代數(shù)定義:

  幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應(yīng)的點(diǎn)到原點(diǎn)的距離。

 ?、讴│≥0,符號“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。

  二、實數(shù)的運(yùn)算

  1.運(yùn)算法則(加、減、乘、除、乘方、開方)

  2.運(yùn)算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的]

  分配律)

  3.運(yùn)算順序:A.高級運(yùn)算到低級運(yùn)算;B.(同級運(yùn)算)從“左”

  到“右”(如5÷×5);C.(有括號時)由“小”到“中”到“大”。

  三、應(yīng)用舉例(略)

  附:典型例題

  1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│

  =b-a.

  2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。

  中考數(shù)學(xué)相關(guān)文章:

  一、重要概念

  1.總體:考察對象的全體。

  2.個體:總體中每一個考察對象。

  3.樣本:從總體中抽出的一部分個體。

  4.樣本容量:樣本中個體的數(shù)目。

  5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。

  6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))

  二、計算方法

  1.樣本平均數(shù):⑴;⑵若,,…,,則(a—常數(shù),,,…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準(zhǔn)確。

  2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數(shù)的較“整”的常數(shù));若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當(dāng)樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。

  3.樣本標(biāo)準(zhǔn)差:

  三、應(yīng)用舉例(略)  
  第四章直線形

  重點(diǎn):相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

  內(nèi)容提要

  一、直線、相交線、平行線

  1.線段、射線、直線三者的區(qū)別與聯(lián)系

  從“圖形”、“表示法”、“界限”、“端點(diǎn)個數(shù)”、“基本性質(zhì)”等方面加以分析。

  2.線段的中點(diǎn)及表示

  3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

  4.兩點(diǎn)間的距離(三個距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

  5.角(平角、周角、直角、銳角、鈍角)

  6.互為余角、互為補(bǔ)角及表示方法

  7.角的平分線及其表示

  8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

  9.對頂角及性質(zhì)

  10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

  11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

  12.定義、命題、命題的組成

  13.公理、定理

  14.逆命題

  二、三角形

  分類:⑴按邊分;

 ?、瓢唇欠?/p>

  1.定義(包括內(nèi)、外角)

  2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中

  3.三角形的主要線段

  討論:①定義②××線的交點(diǎn)—三角形的×心③性質(zhì)

 ?、俑呔€②中線③角平分線④中垂線⑤中位線

 ?、乓话闳切微铺厥馊切危褐苯侨切?、等腰三角形、等邊三角形

  4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

  5.全等三角形

  ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

 ?、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒?/p>

  6.三角形的面積

 ?、乓话阌嬎愎舰菩再|(zhì):等底等高的三角形面積相等。

  7.重要輔助線

  ⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

  8.證明方法

 ?、胖苯幼C法:綜合法、分析法

 ?、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論

 ?、亲C線段相等、角相等常通過證三角形全等

 ?、茸C線段倍分關(guān)系:加倍法、折半法

 ?、勺C線段和差關(guān)系:延結(jié)法、截余法

  ⑹證面積關(guān)系:將面積表示出來

292997