學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 學(xué)好初中數(shù)學(xué)的小妙招

學(xué)好初中數(shù)學(xué)的小妙招

時(shí)間: 鞏詩(shī)1173 分享

學(xué)好初中數(shù)學(xué)的小妙招

  很多同學(xué)在學(xué)習(xí)數(shù)學(xué)的時(shí)候總會(huì)覺(jué)得遇上了瓶頸,難以突破,下面小編為大家分享一些學(xué)好初中數(shù)學(xué)的幾個(gè)妙招。

  學(xué)好初中數(shù)學(xué)的幾個(gè)妙招

  一、將考試的一些錯(cuò)誤信息進(jìn)行分類(lèi):

 ?、龠z憾之錯(cuò)

  就是分明會(huì)做,反而做錯(cuò)了的題。

  比如說(shuō),“審題之錯(cuò)”是由于審題出現(xiàn)失誤,看錯(cuò)數(shù)字等造成的;“計(jì)算之錯(cuò)”是由于計(jì)算出現(xiàn)差錯(cuò)造成的;“抄寫(xiě)之錯(cuò)”是在草稿紙上做對(duì)了,往試卷上一抄就寫(xiě)錯(cuò)了、漏掉了;“表達(dá)之錯(cuò)”是自己答案正確但與題目要求的表達(dá)不一致,如單位混用等。

 ?、谒品侵e(cuò)

  理解的不夠透徹,應(yīng)用得不夠自如;回答不嚴(yán)密、不完整;第一遍做對(duì)了,一改反而改錯(cuò)了;或第一遍做錯(cuò)了,后來(lái)又改對(duì)了;一道題做到一半做不下去了等等。

  ③無(wú)為之錯(cuò)

  由于不會(huì),因而答錯(cuò)了或猜的,或者根本沒(méi)有答。這是無(wú)思路、不理解,更談不上應(yīng)用的問(wèn)題。

  一般情況下,這三類(lèi)錯(cuò)誤的比例是2:7:1,你也可以自己分析一下自己的三類(lèi)錯(cuò)誤比例。得出結(jié)論后,就知道問(wèn)題出在哪里,要針對(duì)性進(jìn)行解決。

  02

  二、出現(xiàn)這些錯(cuò)誤情況的原因:

  ①被動(dòng)學(xué)習(xí)

  許多同學(xué)有很強(qiáng)的依賴(lài)或懶惰的心理,只是被動(dòng)的跟隨老師的慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)的主動(dòng)權(quán)。表現(xiàn)在不定計(jì)劃、坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”,沒(méi)有真正理解所有內(nèi)容。

 ?、趯W(xué)不得法

  老師上課一般都要講清知識(shí)點(diǎn)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專(zhuān)心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微。

  ③不重視基礎(chǔ)

  一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書(shū)寫(xiě),但對(duì)難題很感興趣,以顯示自己的“水平”,好高騖遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。

  ④數(shù)學(xué)思維不夠?qū)拸V

  有的同學(xué)不會(huì)對(duì)知識(shí)的深度、廣度,以及各章節(jié)進(jìn)行總結(jié),并融會(huì)貫通,不會(huì)“多角度”考慮,不會(huì)“概括”、“類(lèi)比”、“聯(lián)想”、“抽象”等各種方法與思維。

 ?、菟烙浻脖?,不能遷移知識(shí)

  初中數(shù)學(xué)主要是以形象、通俗的語(yǔ)言方式進(jìn)行表達(dá)。有些同學(xué)建立了統(tǒng)一的思維模式,就只能機(jī)械的進(jìn)行操作,形成一種定勢(shì)方式。而不會(huì)加強(qiáng)知識(shí)的遷移,對(duì)一道題,要盡可能多想解法,多開(kāi)動(dòng)“腦筋”,使思維“活”起來(lái)。對(duì)一些相近的題,要善于總結(jié),形成“一法多題”。

  03

  三、科學(xué)的學(xué)習(xí)方法:

  學(xué)生僅僅想學(xué)是不夠的,還必須“會(huì)學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動(dòng)為主動(dòng)。

 ?、倥囵B(yǎng)良好的學(xué)習(xí)習(xí)慣

  良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專(zhuān)心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

  制定計(jì)劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計(jì)劃是推動(dòng)主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過(guò)程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。

  課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。預(yù)習(xí)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽(tīng)老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上。

  上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。上課專(zhuān)心聽(tīng)重點(diǎn)難點(diǎn),把老師補(bǔ)充的內(nèi)容記錄下來(lái),而不是全抄全錄,顧此失彼。

  及時(shí)復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過(guò)反復(fù)閱讀教材,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來(lái),進(jìn)行分析比較。

  獨(dú)立作業(yè)是通過(guò)自己的獨(dú)立思考,靈活地分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對(duì)所有新知識(shí)的理解和對(duì)新技能的掌握過(guò)程。

  解決疑難是指對(duì)獨(dú)立完成作業(yè)過(guò)程中暴露出來(lái)對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補(bǔ)遺解答的過(guò)程。做錯(cuò)的作業(yè)要再做一遍,對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考。

  系統(tǒng)小結(jié)是通過(guò)積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過(guò)分析、綜合、類(lèi)比、概括,提示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到所有知識(shí)融會(huì)貫通的目的。

  課外學(xué)習(xí)包括閱讀課外書(shū)籍與報(bào)刊,課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能夠滿足和發(fā)展我們的興趣愛(ài)好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力。

 ?、谥刃驖u進(jìn),防止急躁

  由于學(xué)生年齡較小,閱歷有限,有些學(xué)生容易急躁,有的同學(xué)貪多求快,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點(diǎn)成績(jī)便洋洋自得,遇到挫折又一蹶不振。學(xué)習(xí)是一個(gè)長(zhǎng)期的鞏固舊知識(shí)、發(fā)現(xiàn)新知識(shí)的積累過(guò)程,決非一朝一夕可以完成。學(xué)習(xí)是一項(xiàng)循序漸進(jìn)、長(zhǎng)期積累的過(guò)程,要有恒心、決心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。

  ③研究學(xué)科特點(diǎn),尋找最佳學(xué)習(xí)方法

  數(shù)學(xué)學(xué)科擔(dān)負(fù)著培養(yǎng)學(xué)生運(yùn)算能力、邏輯思維能力、空間想象能力,以及運(yùn)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力的重任。它的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛性,對(duì)能力要求較高。具體尋找方法因人而異,但學(xué)習(xí)的五個(gè)環(huán)節(jié):預(yù)習(xí)、上課、復(fù)習(xí)、作業(yè)、總結(jié)是少不了的。

 ?、芏嘟涣鳌⒍喾此冀庖?,化解分化點(diǎn)

  多和同學(xué)交流,多向老師請(qǐng)教,多開(kāi)展變式練習(xí),化解分化點(diǎn),以達(dá)到靈活掌握知識(shí)、運(yùn)用知識(shí)的目的。

  只要學(xué)習(xí)科學(xué)方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聰明”,多交流,多反思,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,就能順利度過(guò)學(xué)習(xí)適應(yīng)期,就能在今后的數(shù)學(xué)成績(jī)突飛猛進(jìn)。

  04

  四、學(xué)數(shù)學(xué)的幾個(gè)建議:

  1、記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,以及老師補(bǔ)充的課外知識(shí)。

  2、建立數(shù)學(xué)糾錯(cuò)本。

  3、記憶數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論。

  4、與同學(xué)建立良好關(guān)系,爭(zhēng)做“小老師”,形成數(shù)學(xué)學(xué)習(xí)“互助組”。

  5、增加數(shù)學(xué)課外閱讀,加大自學(xué)力度。

  6、反復(fù)鞏固,消滅前學(xué)后忘。

  7、學(xué)會(huì)總結(jié)歸類(lèi)。

  貫穿三年學(xué)習(xí)的9個(gè)經(jīng)典解題法

  1.配方法

  通過(guò)把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和的形式解決數(shù)學(xué)問(wèn)題的方法,叫配方法。

  配方法用的最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法。它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2.因式分解法

  因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,是恒等變形的基礎(chǔ)。它作為數(shù)學(xué)的一個(gè)有力工具在代數(shù)、幾何、三角形等的解題中起著重要的作用。

  因式分解的方法,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

  3.換元法

  換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

  4.判別式&韋達(dá)定理

  一元二次方程ax²+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b²-4ac(2為平方),不僅可以用來(lái)判定根的性質(zhì),而且可以作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。

  5.待定系數(shù)法

  在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答出數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6.構(gòu)造法

  在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

  7.面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置輔助線,即使需要添置輔助線,也很容易考慮到。

  8.幾何變換法

  在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。

  所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。

  另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。

  幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱(chēng)。

  9.反證法

  反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。

  反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。

  用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:

  是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。

  歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。

  導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

4097570