學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 >

數(shù)學(xué)數(shù)列問題的答題技巧

時間: 曾揚1167 分享

  學(xué)生們在高中的數(shù)學(xué)學(xué)習(xí)過程中如果能夠充分掌握高中數(shù)學(xué)數(shù)列試題的解題方法和技巧,這對于在大學(xué)期間學(xué)習(xí)數(shù)學(xué)會有很大的幫助。

  高考數(shù)列通項、求和的答題技巧

  (1)解題路線圖

  ①先求某一項,或者找到數(shù)列的關(guān)系式。

 ?、谇笸椆健?/p>

 ?、矍髷?shù)列和通式。

  (2)構(gòu)建答題模板

 ?、僬疫f推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關(guān)系,即找數(shù)列的遞推公式。

 ?、谇笸棧焊鶕?jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。

 ?、鄱ǚ椒ǎ焊鶕?jù)數(shù)列表達式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

  ④寫步驟:規(guī)范寫出求和步驟。

 ?、菰俜此迹悍此蓟仡?,查看關(guān)鍵點、易錯點及解題規(guī)范。

  高考數(shù)列問題的易錯點

  1.忽視等遞推關(guān)系成立的條件,從而忽視檢驗前幾項。

  2.忽視n為正整數(shù)的默認條件,冒然求導(dǎo),或利用不等式得到非整數(shù)的取等條件。也會因此心理忽視這一個很好用的條件。

  3.裂項相消忘記留下了幾項??梢韵葘憥醉楎炞C。

  4.通過方程求解的數(shù)列可能會漏下情況。

  5.等比數(shù)列注意公比為1不等同于常數(shù)列(如0)。

  6.下角標的不規(guī)范可能會使“-1”模棱兩可,需要注意。

  7.累加法或累乘法漏掉第一項。

  高考數(shù)學(xué)數(shù)列知識點總結(jié)

  等差數(shù)列公式

  等差數(shù)列的通項公式為:an=a1+(n-1)d

  或an=am+(n-m)d

  前n項和公式為:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

  若m+n=2p則:am+an=2ap

  以上n均為正整數(shù)

  文字翻譯

  第n項的值=首項+(項數(shù)-1)*公差

  前n項的和=(首項+末項)*項數(shù)/2

  公差=后項-前項

  等比數(shù)列公式

  等比數(shù)列求和公式

  (1) 等比數(shù)列:a (n+1)/an=q (n∈N)。

  (2) 通項公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m);

  (3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項數(shù))

  (4)性質(zhì):

  ①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;

 ?、谠诘缺葦?shù)列中,依次每 k項之和仍成等比數(shù)列.

 ?、廴鬽、n、q∈N,且m+n=2q,則am×an=aq^2

  (5)"G是a、b的等比中項""G^2=ab(G ≠ 0)".

  (6)在等比數(shù)列中,首項a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項。 等比數(shù)列求和公式推導(dǎo): Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。

4015410