學(xué)習(xí)啦>學(xué)習(xí)方法>各學(xué)科學(xué)習(xí)方法>數(shù)學(xué)學(xué)習(xí)方法>

高中數(shù)學(xué)函數(shù)的知識點(diǎn)

時間: 芷瓊1026 分享

  高中數(shù)學(xué)函數(shù)是高中數(shù)學(xué)課堂中的基本學(xué)習(xí)內(nèi)容之一,這一知識模塊的概念較多,內(nèi)容也相對復(fù)雜,下面是學(xué)習(xí)啦小編為你整理的高中數(shù)學(xué)函數(shù)知識點(diǎn),一起來看看吧。

  高中數(shù)學(xué)函數(shù)知識點(diǎn):一次函數(shù)

  一、定義與定義式

  自變量x和因變量y有如下關(guān)系:y=kx+b 則此時稱y是x的一次函數(shù)。

  特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)

  二、一次函數(shù)的性質(zhì)

  1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實(shí)數(shù) b取任何實(shí)數(shù))

  2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì)

  1.作法與圖形:通過如下3個步驟

  (1)列表;

  (2)描點(diǎn);

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。

  因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

  2.性質(zhì):

  (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

  3.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當(dāng)b>0時,直線必通過一、二象限;

  當(dāng)b=0時,直線通過原點(diǎn)

  當(dāng)b<0時,直線必通過三、四象限。

  特別地,當(dāng)b=0時,直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

  四、一次函數(shù)在生活中的應(yīng)用

  1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

  高中數(shù)學(xué)函數(shù)知識點(diǎn):二次函數(shù)

  一、定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax²+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,|a|還可以決定開口大小,|a|越大開口就越小,|a|越小開口就越大。)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項式。

  二、二次函數(shù)的三種表達(dá)式

  一般式:y=ax²+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)²+k [拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?) [僅限于與x軸有交點(diǎn)A(x?,0)和 B(x?,0)的拋物線]

  三、二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x²的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  四、拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線

  x= -b/2a。

  對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點(diǎn)P,坐標(biāo)為

  P( -b/2a ,(4ac-b²)/4a )

  當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ= b²-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  高中數(shù)學(xué)函數(shù)知識點(diǎn):反比例函數(shù)

  形如 y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

  反比例函數(shù)圖像性質(zhì):反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為|k|。

  知識點(diǎn):

  1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

  2.對于雙曲線y=k/x ,若在分母上加減任意一個實(shí)數(shù) (即 y=k/(x±m)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  高中數(shù)學(xué)函數(shù)知識點(diǎn):對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù) 的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

  (1)對數(shù)函數(shù)的定義域為大于0的實(shí)數(shù)集合。

  (2)對數(shù)函數(shù)的值域為全部實(shí)數(shù)集合。

  (3)函數(shù)總是通過(1,0)這點(diǎn)。

  (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

  (5)顯然對數(shù)函數(shù)無界。

  高中數(shù)學(xué)函數(shù)知識點(diǎn):指數(shù)函數(shù)

  指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實(shí)數(shù)集合為定義域,則只有使得

  可以得到:

  (1) 指數(shù)函數(shù)的定義域為所有實(shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2) 指數(shù)函數(shù)的值域為大于0的實(shí)數(shù)集合。

  (3) 函數(shù)圖形都是下凹的。

  (4) a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5) 可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6) 函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7) 函數(shù)總是通過(0,1)這點(diǎn)。

  (8) 顯然指數(shù)函數(shù)無界。


猜你感興趣的:

1.高一數(shù)學(xué)函數(shù)知識點(diǎn)歸納

2.高三數(shù)學(xué)函數(shù)知識點(diǎn)梳理

3.高一數(shù)學(xué)函數(shù)的基本性質(zhì)知識點(diǎn)梳理

4.高中數(shù)學(xué)函數(shù)知識點(diǎn)

5.高一數(shù)學(xué)必修一函數(shù)知識點(diǎn)總結(jié)

3007798