學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級數(shù)學(xué) > 初三數(shù)學(xué)上冊期末檢測試卷

初三數(shù)學(xué)上冊期末檢測試卷

時(shí)間: 礎(chǔ)鴻1124 分享

初三數(shù)學(xué)上冊期末檢測試卷

  初三數(shù)學(xué)考試很重要,嘲諷考試是一種力量,消極的力量。贊揚(yáng)考試也是一種力量,但卻是積極的力量。以下是學(xué)習(xí)啦小編為你整理的初三數(shù)學(xué)上冊期末檢測試卷,希望對大家有幫助!

  初三數(shù)學(xué)上冊期末檢測試題

  一.選擇題(共10小題,每題3分,共30分)

  1.如果關(guān)于x的方程(m﹣3) ﹣x+3=0是關(guān)于x的一元二次方程,那么m的值為(  )

  A.±3 B.3 C.﹣3 D.都不對

  2.下列方程中,關(guān)于x的一元二次方程是(  )

  A.(x+1)2=2(x+1) B. C.ax2+bx+c=0 D.x2+2x=x2﹣1

  3.有x支球隊(duì)參加籃球比賽,共比賽了45場,每兩隊(duì)之間都比賽一場,則下列方程中符合題意的是(  )

  A. x(x﹣1)=45 B. x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45

  4.拋物線y=2(x﹣3)2+1的頂點(diǎn)坐標(biāo)是(  )

  A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)

  5.一次函數(shù)y=ax+c(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是(  )

  A. B.

  C. D.

  6.下列圖形中,是中心對稱圖形的是(  )

  A. B. C. D.

  7.如圖,四邊形ABCD內(nèi)接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為(  )

  A.45° B.50° C.60° D.75°

  8.一根水平放置的圓柱形輸水管道橫截面如圖所示,其中有水部分水面寬0.8米,最深處水深0.2米,則此輸水管道的直徑是(  )

  A.0.5 B.1 C.2 D.4

  9.下列事件中,必然發(fā)生的事件是(  )

  A.明天會下雨             B.小明數(shù)學(xué)考試得99分

  C.今天是星期一,明天就是星期二    D.明年 有370天

  10.如圖,過反比例函數(shù)y= (x>0)的圖象上一點(diǎn)A作AB⊥x軸于點(diǎn)B,連接AO,若S△AOB=2,則k的值為(  )

  A.2 B.3 C.4 D.5

  二.填空題(共10小題,每題3分,共30分)

  11.已知關(guān)于x的方程x2﹣4x+a=0有兩個(gè)相同的實(shí)數(shù)根,則a的值是  .

  12.拋物線y=2x2﹣6x+10的頂點(diǎn)坐標(biāo)是  .

  13.拋物線的圖象如圖,則它的函數(shù)表達(dá)式是  .當(dāng)x  時(shí),y>0.

  14.如圖,將Rt△ABC繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AB′C′,連結(jié)BB′,若∠1=25°,則∠C的度數(shù)是  .

  15.如圖,點(diǎn)O是△ABC的內(nèi)切圓的圓心,若∠BAC=80°,則∠BOC=  (填度數(shù)).

  16.如圖,半圓O的直徑AB=2,弦CD∥AB,∠COD=90°,則圖中陰影部分的面積為  .

  17.小燕拋一枚硬幣10次,有7次正面朝上,當(dāng)她拋第11次時(shí),正面向上的概率為  .

  18.一個(gè)不透明的盒子中裝有3個(gè)紅球,2個(gè)黃球和1個(gè)綠球,這些球除了顏色外無其他差別,從中隨機(jī)摸出一個(gè)小球,恰好是黃球的概率為  .

  19.反比例函數(shù) 的圖象在第二、四象限,則n的取值范圍為  .

  20.反比例函數(shù)y= 的圖象過點(diǎn)P(2,6),那么k的值是  .

  三.解答題(共60分)

  21.解方程:x2+4x﹣1=0.(4分)

  22.解方程:2(x﹣3)2=x2﹣9.(4分)

  23.(8分)我市“利民快餐店”試銷某種套餐,試銷一段時(shí)間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費(fèi)用為600元(不含套餐成本).若每份售價(jià)不超過10元,每天可銷售400份;若每份售價(jià)超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(jià)x(元)取整數(shù),用y(元)表示該店日純收入.(日純收入=每天的銷售額﹣套餐成本﹣每天固定支出)

  (1)若每份套餐售價(jià)不超過10元.

 ?、僭噷懗鰕與x的函數(shù)關(guān)系式;

  ②若要使該店每天的純收入不少于800元,則每份套餐的售價(jià)應(yīng)不低于多少元?

  (2)該店既要吸引顧客,使每天銷售量較大,又要有較高的日純收入.按此要求,每份套餐的售價(jià)應(yīng)定為多少元?此時(shí)日純收入為多少元?

  24.(6分)△ABC在平面直角坐標(biāo)系中的位置如圖,其中每個(gè)小正方形的邊長為1個(gè)單位長度.

  (1)按要求作圖:

 ?、佼嫵觥鰽BC關(guān)于原點(diǎn)O的中心對稱圖形△A1B1C1;

 ?、诋嫵鰧ⅰ鰽BC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2.

  (2)回答下列問題:

 ?、佟鰽1B1C1中頂點(diǎn)A1坐標(biāo)為  ;

 ?、谌鬚(a,b)為△ABC邊上一點(diǎn),則按照(1)中①作圖,點(diǎn)P對應(yīng)的點(diǎn)P1的坐標(biāo)為  .

  25.(12分)如圖,已知MN是⊙O的直徑,直線PQ與⊙O相切于P點(diǎn),NP平分∠MNQ.

  (1)求證:NQ⊥PQ;

  (2)若⊙O的半徑R=2,NP= ,求NQ的長.

  26.(6分)杭州某網(wǎng)站調(diào)查,2014年網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:

  根據(jù)以上信息解答下列問題:

  (1)請補(bǔ)全條形統(tǒng)計(jì)圖并在圖中標(biāo)明相應(yīng)數(shù)據(jù);

  (2)若杭州市約有900萬人口,請你估計(jì)最關(guān)注環(huán)保問題的人數(shù)約為多少萬人?

  (3)在這次調(diào)查中,某 單位共有甲、乙、丙、丁四人最關(guān)注教育問題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,則抽取的兩人恰好是甲和乙的概率為  .

  27.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A﹙﹣2,﹣5﹚C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.

  (1)求反比例函數(shù)y= 和一次函數(shù)y=kx+b的表達(dá)式;

  (2)連接OA,OC.求△AOC的面積.

  28.(12分)如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C

  (1)求點(diǎn)A,B,C的坐標(biāo);

  (2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;

  (3)此拋物線的對稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

  初三數(shù)學(xué)上冊期末檢測試卷答案

  一.選擇題(共10小題)

  1.(2016•德州校級自主招生)如果關(guān)于x的方程(m﹣3) ﹣x+3=0是關(guān)于x的一元二次方程,那么m的值為(  )

  A.±3 B.3 C.﹣3 D.都不對

  【考點(diǎn)】一元二次方程的定義.

  【分析】本題根據(jù)一元二次方程的定義解答,一元二次方程必須滿足四個(gè)條件:

  (1)未知數(shù)的最高次數(shù)是2;

  (2)二次項(xiàng)系數(shù)不為0;

  (3)是整式方程;

  (4)含有一個(gè)未知數(shù).據(jù)此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范圍.

  【解答】解:由一元二次方程的定義可知 ,

  解得m=﹣3.

  故選C.

  2.(2016•新都區(qū)模擬)下列方程中,關(guān)于x的一元二次方程是(  )

  A.(x+1)2=2(x+1) B. C.ax2+bx+c=0 D.x2+2x=x2﹣1

  【考點(diǎn)】一元二次方程的定義.

  【分析】利用一元二次方程的定義判斷即可.

  【解答】解:下列方程中,關(guān)于x的一元二次方程是(x+1)2=2(x+1),

  故選A.

  3.(2016•臺州)有x支球隊(duì)參加籃球比賽,共比賽了45場,每兩隊(duì)之間都比賽一場,則下列方程中符合題意的是(  )

  A. x(x﹣1)=45 B. x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45

  【考點(diǎn)】由實(shí)際問題抽象出一元二次方程.

  【分析】先列出x支籃球隊(duì),每兩隊(duì)之間都比賽一場,共可以比賽 x(x﹣1)場,再根據(jù)題意列出方程為 x(x﹣1)=45.

  【解答】解:∵有x支球隊(duì)參加籃球比賽,每兩隊(duì)之間都比賽一場,

  ∴共比賽場數(shù)為 x(x﹣1),

  ∴共比賽了45場,

  ∴ x(x﹣1)=45,

  故選A.

  4.(2016•湘潭)拋物線y=2(x﹣3)2+1的頂點(diǎn)坐標(biāo)是(  )

  A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)

  【考點(diǎn)】二次函數(shù)的性質(zhì).

  【分析】已知拋物線的頂點(diǎn)式,可直接寫出頂點(diǎn)坐標(biāo).

  【解答】解:由y=2(x﹣3)2+1,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,頂點(diǎn)坐標(biāo)為(3,1).

  故選:A.

  5.(2016•畢節(jié)市)一次函數(shù)y=ax+c(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是(  )

  A. B. C. D.

  【考點(diǎn)】二次函數(shù)的圖象;一次函數(shù)的圖象.

  【分析】本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.

  【解答】解:A、一次函數(shù)y=ax+c與y軸交點(diǎn)應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點(diǎn)也應(yīng)為(0,c),圖象不符合,故本選項(xiàng)錯(cuò)誤;

  B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;

  C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;

  D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點(diǎn)相同,故本選項(xiàng)正確.

  故選D.

  6.(2016•臨夏州)下列圖形中,是中心對稱圖形的是(  )

  A. B. C. D.

  【考點(diǎn)】中心對稱圖形.

  【分析】根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.

  【解答】解:A、是中心對稱圖形,故本選項(xiàng)正確;

  B、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;

  C、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;

  D、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;

  故選:A.

  7.(2016•蘭州)如圖,四邊形ABCD內(nèi)接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為(  )

  A.45° B.50° C.60° D.75°

  【考點(diǎn)】圓內(nèi)接四邊形的性質(zhì);平行四邊形的性質(zhì);圓周角定理.

  【分析】設(shè)∠ADC的度數(shù)=α,∠ABC的度數(shù)=β,由題意可得 ,求出β即可解決問題.

  【解答】解:設(shè)∠ADC的度數(shù)=α,∠ABC的度數(shù)=β;

  ∵四邊形ABCO是平行四邊形,

  ∴∠ABC=∠AOC;

  ∵∠ADC= β,∠AOC=α;而α+β=180°,

  ∴ ,

  解得:β=120°,α=60°,∠ADC=60°,

  故選C.

  8.(2016•桐城市模擬)一根水平放置的圓柱形輸水管道橫截面如圖所示,其中有水部分水面寬0.8米,最深處水深0.2米,則此輸水管道的直徑是(  )

  A.0.5 B.1 C.2 D.4

  【考點(diǎn)】垂徑定理的應(yīng)用.

  【分析】根據(jù)題意知,已知弦長和弓形高,求半徑(直徑).根據(jù)垂徑定理和勾股定理求解.

  【解答】解:設(shè)半徑為r,過O作OE⊥AB交AB于點(diǎn)D,連接OA、OB,

  則AD= AB= ×0.8=0.4米,

  設(shè)OA=r,則OD=r﹣DE=r﹣0.2,

  在Rt△OAD中,

  OA2=AD2+OD2,即r2=0.42+(r﹣0.2)2,解得r=0.5米,

  故此輸水管道的直徑=2r=2×0.5=1米.

  故選B.

  9.(2016•朝陽區(qū)校級模擬)下列事件中,必然發(fā)生的事件是(  )

  A.明天會下雨

  B.小明數(shù)學(xué)考試得99分

  C.今天是星期一,明天就是星期二

  D.明年有370天

  【考點(diǎn)】隨機(jī)事件.

  【分析】必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件.

  【解答】解:A、B、D選項(xiàng)為不確定事件,即隨機(jī)事件,故錯(cuò)誤;

  一定發(fā)生的事件只有第三個(gè)答案C、今天是星期一,明天就是星期二.

  故選C.

  10.(2016•河南)如圖,過反比例函數(shù)y= (x>0)的圖象上一點(diǎn)A作AB⊥x軸于點(diǎn)B,連接AO,若S△AOB=2,則k的值為(  )

  A.2 B.3 C.4 D.5

  【考點(diǎn)】反比例函數(shù)系數(shù)k的幾何意義;反比例函數(shù)的性質(zhì).

  【分析】根據(jù)點(diǎn)A在反比例函數(shù)圖象上結(jié)合反比例函數(shù)系數(shù)k的幾何意義,即可得出關(guān)于k的含絕對值符號的一元一次方程,解方程求出k值,再結(jié)合反比例函數(shù)在第一象限內(nèi)有圖象即可確定k值.

  【解答】解:∵點(diǎn)A是反比例函數(shù)y= 圖象上一點(diǎn),且AB⊥x軸于點(diǎn)B,

  ∴S△AOB= |k|=2,

  解得:k=±4.

  ∵反比例函數(shù)在第一象限有圖象,

  ∴k=4.

  故選C.

  二.填空題(共10小題)

  11.(2016•溫州校級自主招生)已知關(guān)于x的方程x2﹣4x+a=0有兩個(gè)相同的實(shí)數(shù)根,則a的值是 4 .

  【考點(diǎn)】根的判別式.

  【分析】若一元二次方程有兩個(gè)相等實(shí)數(shù)根,則根的判別式△=b2﹣4ac=0,建立關(guān)于a的方程,求出a的值.

  【解答】解:由題意得:△=0,

  則:(﹣4)2﹣4×1×a=0,

  解得:a=4,

  故答案為:4.

  12.(2017秋•海寧市校級月考)拋物線y=2x2﹣6x+10的頂點(diǎn)坐標(biāo)是 ( , ) .

  【考點(diǎn)】二次函數(shù)的性質(zhì).

  【分析】用配方法將拋物線的一般式轉(zhuǎn)化為頂點(diǎn)式,直接寫出頂點(diǎn)坐標(biāo).

  【解答】解:∵y=2x2﹣6x+10=2(x﹣ )2+ ,

  ∴頂點(diǎn)坐標(biāo)為( , ).

  故本題答案為:( , ).

  13.(2016•丹陽市校級模擬)拋物線的圖象如圖,則它的函數(shù)表達(dá)式是 y=x2﹣4x+3 .當(dāng)x <1,或x>3 時(shí),y>0.

  【考點(diǎn)】待定系數(shù)法求二次函數(shù)解析式.

  【分析】觀察可知拋物線的圖象經(jīng)過(1,0),(3,0),(0,3),可設(shè)交點(diǎn)式用待定系數(shù)法得到二次函數(shù)的解析式.

  y>0時(shí),求x的取值范圍,即求拋物線落在x軸上方時(shí)所對應(yīng)的x的值.

  【解答】解:觀察可知拋物線的圖象經(jīng)過(1,0),(3,0),(0,3),

  由“交點(diǎn)式”,得拋物線解析式為y=a(x﹣1)(x﹣3),

  將(0,3)代入,

  3=a(0﹣1)(0﹣3),

  解得a=1.

  故函數(shù)表達(dá)式為y=x2﹣4x+3.

  由圖可知當(dāng)x<1,或x>3時(shí),y>0.

  14.(2016•海曙區(qū)一模)如圖,將Rt△ABC繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△AB′C′,連結(jié)BB′,若∠1=25°,則∠C的度數(shù)是 70° .

  【考點(diǎn)】旋轉(zhuǎn)的性質(zhì).

  【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AB′,然后判斷出△ABB′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠ABB′=45°,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠B′C′A,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠C=∠B′C′A.

  【解答】解:∵Rt△ABC繞直角頂點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△AB′C′,

  ∴AB=AB′,

  ∴△ABB′是等腰直角三角形,

  ∴∠ABB′=45°,

  ∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,

  由旋轉(zhuǎn)的性質(zhì)得∠C=∠AC′B′=70°.

  故答案為:70°.

  15.(2016秋•宜興市期中)如圖,點(diǎn)O是△ABC的內(nèi)切圓的圓心,若∠BAC=80°,則∠BOC= 130° (填度數(shù)).

  【考點(diǎn)】三角形的內(nèi)切圓與內(nèi)心.菁優(yōu)網(wǎng)版權(quán) 所有

  【分析】運(yùn)用三角形內(nèi)角和定理得出∠ABC+∠ACB的度數(shù),再根據(jù)點(diǎn)O是△ABC的內(nèi)切圓的圓心,得出∠OBC+∠OCB=50°,從而得出答案.

  【解答】解:∵∠BAC=80°,

  ∴∠ABC+∠ACB=180°﹣80°=100°,

  ∵點(diǎn)O是△ABC的內(nèi)切圓的圓心,

  ∴BO,CO分別為∠ABC,∠BCA的角平分線,

  ∴∠OBC+∠OCB=50°,

  ∴∠BOC=130°.

  故答案為:130°.

  16.(2016•寧波)如圖,半圓O的直徑AB=2,弦CD∥AB, ∠COD=90°,則圖中陰影部分的面積為   .

  【考點(diǎn)】扇形面積的計(jì)算.

  【分析】由CD∥AB可知,點(diǎn)A、O到直線CD的距離相等,結(jié)合同底等高的三角形面積相等即可得出S△ACD=S△OCD,進(jìn)而得出S陰影=S扇形COD,根據(jù)扇形的面積公式即可得出結(jié)論.

  【解答】解:∵弦CD∥AB,

  ∴S△AC D=S△OCD,

  ∴S陰影=S扇形COD= •π• = ×π× = .

  故答案為: .

  17.(2016•福建模擬)小燕拋一枚硬幣10次,有7次正面朝上,當(dāng)她拋第11次時(shí),正面向上的概率為   .

  【考點(diǎn)】概率的意義.

  【分析】求出一次拋一枚硬幣正面朝上的概率即可.

  【解答】解:∵拋硬幣正反出現(xiàn)的概率是相同的,不論拋多少次出現(xiàn)正面或反面的概率是一致的,

  ∴正面向上的概率為 .

  故答案為: .

  18.(2016•婁星區(qū)一模)一個(gè)不透明的盒子中裝有3個(gè)紅球,2個(gè)黃球和1個(gè)綠球,這些球除了顏色外無其他差別,從中隨機(jī)摸出一個(gè)小球,恰好是黃球的概率為   .

  【考點(diǎn)】概率公式.

  【分析】由一個(gè)不透明的盒子中裝有3個(gè)紅球,2個(gè)黃球和1個(gè)綠球,直接利用概率公式求解即可求得答案.

  【解答】解:∵一個(gè)不透明的盒子中裝有3個(gè)紅球,2個(gè)黃球和1個(gè)綠球,這些球除了顏色外無其他差別,

  ∴從中隨機(jī)摸出一個(gè)小球,恰好是黃球的概率為: = .

  故答案為: .

  19.(2016•廈門校級一模)反比例函數(shù) 的圖象在第二、四象限,則n的取值范圍為 n<1 .

  【考點(diǎn)】反比例函數(shù)的性質(zhì).

  【分析】由于反比例函數(shù) 的圖象在二、四象限內(nèi),則n﹣1<0,解得n的取值范圍即可.

  【解答】解:由題意得,反比例函數(shù) 的圖象在二、四象限內(nèi),

  則n﹣1<0,

  解得n<1.

  故答案為n<1.

  20.(2016•溧水區(qū)二模)反比例函數(shù)y= 的圖象過點(diǎn)P(2,6),那么k的值是 12 .

  【考點(diǎn)】反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.

  【分析】根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:圖象上的點(diǎn)(x,y)的橫縱 坐標(biāo)的積是定值k,即xy=k即可算出k的值.

  【解答】解:∵反比例函數(shù)y= 的圖象過點(diǎn)P(2,6),

  ∴k=2×6=12,

  故答案為:12.

  三.解答題(共8小題)

  21.(2016•淄博)解方程:x2+4x﹣1=0.

  【考點(diǎn)】解一元二次方程-配方法.

  【分析】首先進(jìn)行移項(xiàng),得到x2+4x=1,方程左右兩邊同時(shí)加上4,則方程左邊就是完全平方式,右邊是常數(shù)的形式,再利用直接開平方法即可求解.

  【解答】解:∵x2+4x﹣1=0

  ∴x2+4x=1

  ∴x2+4x+4=1+4

  ∴(x+2)2=5

  ∴x=﹣2±

  ∴x1=﹣2+ ,x2=﹣2﹣ .

  22.(2016•山西)解方程:2(x﹣3)2=x2﹣9.

  【考 點(diǎn)】解一元二次方程-因式分解法.

  【分析】方程移項(xiàng)后,提取公因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來求解.

  【解答】解:方程變形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,

  分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,

  解得:x1=3,x2=9.

  23.(2015秋•萬州區(qū)校級月考)我市“利民快餐店”試銷某種套餐,試銷一段時(shí)間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費(fèi)用為600元(不含套餐成本).若每份售價(jià)不超過10元,每天可銷售400份;若每份售價(jià)超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(jià)x(元)取整數(shù),用y(元)表示該店日純收入.(日純收入=每天的銷售額﹣套餐成本﹣每天固定支出)

  (1)若每份套餐售價(jià)不超 過10元.

 ?、僭噷懗鰕與x的函數(shù)關(guān)系式;

 ?、谌粢乖摰昝刻斓募兪杖氩簧儆?00元,則每份套餐的售價(jià)應(yīng)不低于多少元?

  (2)該店既要吸引顧客,使每天銷售量較大,又要有較高的日純收入.按此要求,每份套餐的售價(jià)應(yīng)定為多少元?此時(shí)日純收入為多少元?

  【考點(diǎn)】二次函數(shù)的應(yīng)用.

  【分析】(1)①利用每份套餐的成本為5元,該店每天固定支出費(fèi)用為600元(不含套餐成本),以及每份套餐售價(jià)不超過10元,每天可銷售400份得出等式求出即可;

 ?、谟深}意得400(x﹣5)﹣600≥800,解出x的取值范圍即可.

  (2)由題意可得y與x的函數(shù)關(guān)系式,由二次函數(shù)的性質(zhì)即可得到每份套餐的售價(jià)應(yīng)定為多少元,并且此時(shí)日純收入的錢數(shù)可計(jì)算得出.

  【解答】解:(1)①y=400(x﹣5)﹣600.

 ?、谝李}意得:400(x﹣5)﹣600≥800,解得:x≥8.5,

  ∵5

  ∴每份套餐的售價(jià)應(yīng)不低于9元.

  (2)當(dāng)5

  日凈收入最大為y=400×10﹣2600=1400 (元)

  當(dāng)x>10時(shí),y=(x﹣5)•[400﹣(x﹣10)×40]﹣600=﹣40(x﹣12.5)2+1650,

  又∵x只能為整數(shù),∴當(dāng)x=12或13時(shí),日銷售利潤最大,

  但為了吸引顧客,提高銷量,取x=12,

  此時(shí)的日利潤為:﹣40(12﹣12.5)2+1650=1640元;

  答:每份套餐的售價(jià)為12元時(shí),日純收入為1640元.

  24.(2016春•高郵市校級期中)△ABC在平面直角坐標(biāo)系中的位置如圖,其中每個(gè)小正方形的邊長為1個(gè)單位長度.

  (1)按要求作圖:

 ?、佼嫵觥鰽BC關(guān)于原點(diǎn)O的中心對稱圖形△A1B1C1;

 ?、诋嫵鰧ⅰ鰽BC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2.

  (2)回答下列問題:

  ①△A1B1C1中頂點(diǎn)A1坐標(biāo)為 (2,﹣4) ;

 ?、谌鬚(a,b)為△ABC邊上一點(diǎn),則按照(1)中①作圖,點(diǎn)P對應(yīng)的點(diǎn)P1的坐標(biāo)為 (﹣a,﹣b) .

  【考點(diǎn)】作圖-旋轉(zhuǎn)變換.

  【分析】(1)首先找出對應(yīng)點(diǎn)的位置,再順次連接即可;

  (2)①根據(jù)圖形可直接寫出坐標(biāo);②根據(jù)關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)特點(diǎn)可得答案.

  【解答】解:(1)如圖所示:

  (2)①根據(jù)圖形可得A1坐標(biāo)為(2,﹣4);

 ?、邳c(diǎn)P1的坐標(biāo)為(﹣a,﹣b).

  故答案為:(﹣2,﹣4);(﹣a,﹣b).

  25.(2014•東臺市二 模)如圖,已知MN是⊙O的直徑,直線PQ與⊙O相切于P點(diǎn),NP平分∠MNQ.

  (1)求證:NQ⊥PQ;

  (2)若⊙O的半徑R=2,NP= ,求NQ的長.

  【考點(diǎn)】切線的性質(zhì).

  【分析】(1)連結(jié)OP,根據(jù)切線的性質(zhì)由直線PQ與⊙O相切得OP⊥PQ,再由OP=ON得到∠ONP=∠OPN,由NP平分∠MNQ得到∠ONP=∠QNP,利用等量代換得∠OPN=∠QNP,根據(jù)平行線的判定得OP∥NQ,所以NQ⊥PQ;

  (2)連結(jié)PM,根據(jù)圓周角定理由MN是⊙O的直徑得到∠MPN=90°,易證得Rt△NMP∽Rt△NPQ,然后利用相似比可計(jì)算出NQ的長.

  【解答】(1)證明:連結(jié)OP,如圖,

  ∴直線PQ與⊙O相切,

  ∴OP⊥PQ,

  ∵OP=ON,

  ∴∠ONP=∠OPN,

  ∵NP平分∠MNQ,

  ∴∠ONP=∠QNP,

  ∴∠OPN=∠QNP,

  ∴OP∥NQ,

  ∴NQ⊥PQ;

  (2)解:連結(jié)PM,如圖,

  ∵M(jìn)N是⊙O的直徑,

  ∴∠MPN=90°,

  ∵NQ⊥PQ,

  ∴∠PQN=90°,

  而∠MNP=∠QNP,

  ∴Rt△NMP∽Rt△NPQ,

  ∴ = ,即 = ,

  ∴NQ=3.

  26.(2016•吳興區(qū)模擬)杭州某網(wǎng)站調(diào)查,2014年網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:

  根據(jù)以上信息解答下列問題:

  (1)請補(bǔ)全條形統(tǒng)計(jì)圖并在圖中標(biāo)明相應(yīng)數(shù)據(jù);

  (2)若杭州市約有900萬人口,請你估計(jì)最關(guān)注 環(huán)保問題的人數(shù)約為多少萬人?

  (3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,則抽取的兩人恰好是甲和乙的概率為   .

  【考點(diǎn)】列表法與樹狀圖法;用樣本估計(jì)總體;扇形統(tǒng)計(jì)圖;條形統(tǒng)計(jì)圖.

  【分析】(1)根據(jù)關(guān)注消費(fèi)的人數(shù)是420人,所占的比例式是30%,即可求得總?cè)藬?shù),然后利用總?cè)藬?shù)乘以關(guān)注教育的比例求得關(guān)注教育的人數(shù);

  (2)利用總?cè)藬?shù)乘以對應(yīng)的百分比即可;

  (3)利用列舉法即可求解即可.

  【解答】解:(1)調(diào)查的總?cè)藬?shù)是:420÷30%=1400(人),

  關(guān)注教育的人數(shù)是:1400×25%=350(人).

  ;

  (2)900×10%=90萬人;

  (3)畫樹形圖得:

  則P(抽取的兩人恰好是甲和乙)= = .

  故答案為: .

  27.(2016春•洛江區(qū)期末)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A﹙﹣2,﹣5﹚C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.

  (1)求反比例函數(shù)y= 和一次函數(shù)y=kx+b的表達(dá)式;

  (2)連接OA,OC.求△AOC的面積.

  【考點(diǎn)】反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.

  【分析】(1)把A(﹣2,﹣5)代入y= 求得m的值,然后求得C的坐標(biāo),利用待定系數(shù)法求得直線的解析式;

  (2)首先求得C的坐標(biāo),根據(jù)S△AOC=S△AOB+S△BOC即可求解.

  【解答】解:(1)把A(﹣2,﹣5)代入y= 得:﹣5= ,

  解得:m=10,

  則反比例函數(shù)的解析式是:y= ,

  把x=5代入,得:y= =2,

  則C的坐標(biāo)是(5,2).

  根據(jù)題意得: ,

  解得: ,

  則一次函數(shù)的解析式是:y=x﹣3.

  (2)在y=x﹣3中,令x=0,解得:y=﹣3.

  則B的坐標(biāo)是(0,﹣3).

  ∴OB=3,

  ∵點(diǎn)A的橫坐標(biāo)是﹣2,C的橫坐標(biāo)是5.

  ∴S△AOC=S△AOB+S△BOC= OB×2×5+ ×OB×5= ×3×7= .

  28.(2016•濱州)如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C

  (1)求點(diǎn)A,B,C的坐標(biāo);

  (2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;

  (3)此拋物線的對稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

  【考點(diǎn)】二次函數(shù)綜合題.

  【分析】(1)分別令y=0,x=0,即可解決問題.

  (2)由圖象可知AB只能為平行四邊形的邊,分E點(diǎn)為拋物線上的普通點(diǎn)和頂點(diǎn)2種情況討論,即可求出平行四邊形的面積.

  (3)分A、C、M為頂點(diǎn)三種情形討論,分別求解即可解決問題.

  【解答】解:(1)令y=0得﹣ x2﹣ x+2=0,

  ∴x2+2x﹣8=0,

  x=﹣4或2,

  ∴點(diǎn)A坐標(biāo)(2,0),點(diǎn)B坐標(biāo)(﹣4,0),

  令x=0,得y=2,∴點(diǎn)C坐標(biāo)(0,2).

  (2)由圖象①AB為平行四邊形的邊時(shí),

  ∵AB=EF=6,對稱軸x=﹣1,

  ∴點(diǎn)E的橫坐標(biāo)為﹣7或5,

  ∴點(diǎn)E坐標(biāo)(﹣7,﹣ )或(5,﹣ ),此時(shí)點(diǎn)F(﹣1,﹣ ),

  ∴以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積=6× = .

 ?、诋?dāng)點(diǎn)E在拋物線頂點(diǎn)時(shí),點(diǎn)E(﹣1, ),設(shè)對稱軸與x軸交點(diǎn)為M,令EM與FM相等,則四邊形AEBF是菱形,此時(shí)以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積= ×6× = .

  (3)如圖所示,①當(dāng)C為等腰三角形的頂角的頂點(diǎn)時(shí),CM1=CA,CM2=CA,作M1N⊥OC于N,

  在RT△CM1N中,CN= = ,

  ∴點(diǎn)M1坐標(biāo)(﹣1,2+ ),點(diǎn)M2坐標(biāo)(﹣1,2﹣ ).

 ?、诋?dāng)M3為等腰三角形的頂角的頂點(diǎn)時(shí),∵直線AC解析式為y=﹣x+2,

  線段AC的垂直平分線為y=x,

  ∴點(diǎn)M3坐標(biāo)為(﹣1,﹣1).

  ③當(dāng)點(diǎn)A為等腰三角形的頂角的頂點(diǎn)的三角形不存在.

  綜上所述點(diǎn)M坐標(biāo)為(﹣1,﹣1)或(﹣1,2+ )或(﹣1,2﹣ ).

3731876