高三數(shù)學(xué)常用公式匯總
高三數(shù)學(xué)常用公式匯總
高考數(shù)學(xué)復(fù)習(xí)公式是必不可少的,高三數(shù)學(xué)常用公式有哪些呢?下面是學(xué)習(xí)啦小編為大家整理的高三數(shù)學(xué)常用公式匯總,希望對大家有所幫助!
高三數(shù)學(xué)常用公式總結(jié)
一、對數(shù)函數(shù)
log.a(MN)=logaM+logN
loga(M/N)=logaM-logaN
logaM^n=nlogaM(n=R)
logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)
二、簡單幾何體的面積與體積
S直棱柱側(cè)=c*h(底面周長乘以高)
S正棱椎側(cè)=1/2*c*h′(底面的周長和斜高的一半)
設(shè)正棱臺(tái)上、下底面的周長分別為c′,c,斜高為h′,S=1/2*(c+c′)*h
S圓柱側(cè)=c*l
S圓臺(tái)側(cè)=1/2*(c+c′)*l=兀*(r+r′)*l
S圓錐側(cè)=1/2*c*l=兀*r*l
S球=4*兀*R^3
V柱體=S*h
V錐體=(1/3)*S*h
V球=(4/3)*兀*R^3
三、兩直線的位置關(guān)系及距離公式
(1)數(shù)軸上兩點(diǎn)間的距離公式|AB|=|x2-x1|
(2) 平面上兩點(diǎn)A(x1,y1),(x2,y2)間的距離公式
|AB|=sqr[(x2-x1)^2+(y2-y1)^2]
(3) 點(diǎn)P(x0,y0)到直線l:Ax+By+C=0的距離公式 d=|Ax0+By0+C|/sqr
(A^2+B^2)
(4) 兩平行直線l1:=Ax+By+C=0,l2=Ax+By+C2=0之間的距離d=|C1-
C2|/sqr(A^2+B^2)
同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式
sin(2*k*兀+a)=sin(a)
cos(2*k*兀+a)=cosa
tan(2*兀+a)=tana
sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana
sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana
sin(兀+a)=-sina
sin(兀-a)=sina
cos(兀+a)=-cosa
cos(兀-a)=-cosa
tan(兀+a)=tana
四、二倍角公式及其變形使用
1、二倍角公式
sin2a=2*sina*cosa
cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2
tan2a=(2*tana)/[1-(tana)^2]
2、二倍角公式的變形
(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
五、正弦定理和余弦定理
正弦定理:
a/sinA=b/sinB=c/sinC
余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosC
cosA=(b^2+c^2-a^2)/2bc
cosB=(a^2+c^2-b^2)/2ac
cosC=(a^2+b^2-c^2)/2ab
tan(兀-a)=-tana
sin(兀/2+a)=cosa
sin(兀/2-a)=cosa
cos(兀/2+a)=-sina
cos(兀/2-a)=sina
tan(兀/2+a)=-cota
tan(兀/2-a)=cota
(sina)^2+(cosa)^2=1
sina/cosa=tana
兩角和與差的余弦公式
cos(a-b)=cosa*cosb+sina*sinb
cos(a-b)=cosa*cosb-sina*sinb
兩角和與差的正弦公式
sin(a+b)=sina*cosb+cosa*sinb
sin(a-b)=sina*cosb-cosa*sinb
兩角和與差的正切公式
tan(a+b)=(tana+tanb)/(1-tana*tanb)
tan(a-b)=(tana-tanb)/(1+tana*tanb)
看過"高三數(shù)學(xué)常用公式匯總 "的還看了: