數(shù)學(xué)學(xué)習(xí)注重思想方法
在課堂上,積極記錄重要的數(shù)學(xué)概念和原則。通過書寫和整理筆記,加深對內(nèi)容的理解,并提供一個方便的復(fù)習(xí)工具。下面是小編為大家?guī)淼?/span>數(shù)學(xué)學(xué)習(xí)注重思想方法,希望大家能夠喜歡!快來看看吧!
數(shù)學(xué)學(xué)習(xí)注重思想方法
小題切勿大做,時間的把握很關(guān)鍵,一般來說以二本生為準(zhǔn)應(yīng)控制在45分鐘左右做完,為后面的解答題爭取更充足的時間,也有利于穩(wěn)定情緒。但是解小題(選擇、填空)還有一項(xiàng)要求,就是既快又準(zhǔn),要達(dá)到這一點(diǎn)要求我們需結(jié)合試題特點(diǎn),注重數(shù)學(xué)思想方法的運(yùn)用,靈活機(jī)動的采用一些技巧解題,比如善于使用數(shù)形結(jié)合、特值(含特殊值、特殊位置、特殊圖形)、排除、驗(yàn)證、轉(zhuǎn)化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不在一道題上糾纏,選擇題即使是"蒙",也有25%的勝率。
遇到難題不棄,尋求策略得分
會做的題當(dāng)然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點(diǎn)思路都沒有,我們不妨羅列一些相關(guān)的重要步驟和公式,也許不覺中已找到了解題的
思路。再就是要學(xué)會"分段得分",高考數(shù)學(xué)解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向后求解;或是前后兩問無聯(lián)系,只做其中某一問等等。
遇到難題不棄,尋求策略得分
數(shù)學(xué)選擇題的解題技巧——解題技巧(7)
會做的題當(dāng)然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點(diǎn)思路都沒有,我們不妨羅列一些相關(guān)的重要步驟和公式,也許不覺中已找到了解題的
思路。再就是要學(xué)會"分段得分",高考數(shù)學(xué)解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向后求解;或是前后兩問無聯(lián)系,只做其中某一問等等。
選擇題的解法
(1)缺步解答:聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,能解決多少就解決多少,能演算幾步就寫幾步。特別是那些解題層次明顯的題目,或者是已經(jīng)程序化了的方法,每進(jìn)行一步得分點(diǎn)的演算都可以得分,最后結(jié)論雖然未得出,但分?jǐn)?shù)卻已過半。
(2)跳步答題:解題過程卡在某一過渡環(huán)節(jié)上是常見的。這時,我們可以假定某些結(jié)論是正確的往后推,看能否得到結(jié)論,或從結(jié)論出發(fā),看使結(jié)論成立需要什么條件。如果方向正確,就回過頭來,集中力量攻克這一“卡殼處”。如果時間不允許,那么可以把前面的寫下來,再寫出“證實(shí)某步之后,繼續(xù)有……”一直做到底,這就是跳步解答。也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補(bǔ)在后面。若題目有兩問,第一問想不出來,可把第一問作“已知”,“先做第二問”,這也是跳步解答。
填空題的解法
填空題答案有著簡短、明確、具體的要求,解題基本原則是小題大做別馬虎,特別是解的個數(shù)和形式是否滿足題意,有沒有漏解和不滿足題目要求的解要認(rèn)真區(qū)別對待。今年數(shù)學(xué)高考填空題的分值增加許多,其得分情況對高考成績大有影響,所以答題時要給予足夠的精力和時間,填空的解法主要有:直接求解法、特例求解法、數(shù)形結(jié)合法,解題時靈活應(yīng)用。
數(shù)學(xué)的解題的方法
1、首先是精選題目,做到少而精。只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。
2、其次是分析題目。解答任何一個數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個過程中也反映出對數(shù)學(xué)基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
3、最后,題目總結(jié)。解題不是目的,我們是通過解題來檢驗(yàn)我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機(jī)會。對于一道完成的題目,有以下幾個方面需要總結(jié):
①在知識方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個步驟)。
④能不能歸納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵學(xué)生自己總結(jié)、歸納題目類型)。