學習啦 > 學習方法 > 教學方法 >

初一數(shù)學《有理數(shù)的加減法》教學設計

時間: 於寶21274 分享

  在課堂教學中,要培養(yǎng)學生的學習興趣,首先應抓住導入新課這一環(huán)節(jié),數(shù)學課的導入一般是通過設置問題開始,有了問題,思維就有了方向;有了問題,思維才有動力。下面是小編給大家?guī)淼某跻弧队欣頂?shù)的加減法》教學設計,希望能夠幫助到大家!

  初一《有理數(shù)的加減法》教學設計

  教學目標

  1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;

  2.能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;

  3.三個或三個以上有理數(shù)相加時,能正確應用加法交換律和結合律簡化運算過程;

  4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;

  5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應用于生活。

  教學建議

  (一)重點、難點分析

  本節(jié)教學的重點是依據(jù)有理數(shù)的加法法則熟練進行有理數(shù)的加法運算。難點是有理數(shù)的加法法則的理解。

  (1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。

  (2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。

  (3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。

  (二)知識結構

  (三)教法建議

  1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數(shù)、相反數(shù)、絕對值等知識。

  2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。

  3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。

  4.計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。

  5.可以給出一些類似“兩數(shù)之和必大于任何一個加數(shù)”的判斷題,以明確由于負數(shù)參與加法運算,一些算術加法中的正確結論在有理數(shù)加法運算中未必也成立。

  6.在探討導出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。

  教學設計示例

  有理數(shù)的加法(第一課時)

  教學目的

  1.使學生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算.

  2.通過有理數(shù)的加法運算,培養(yǎng)學生的運算能力.

  教學重點與難點

  重點:熟練應用有理數(shù)的加法法則進行加法運算.

  難點:有理數(shù)的加法法則的理解.

  教學過程

  (一)復習提問

  1.有理數(shù)是怎么分類的?

  2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?

  3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?

  -3與-2;|3|與|-3|;|-3|與0;

  -2與|+1|;-|+4|與|-3|.

  (二)引入新課

  在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學有理數(shù)的加法運算.

  (三)進行新課 有理數(shù)的加法(板書課題)

  例1 如圖所示,某人從原點0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?

  兩次行走后距原點0為8米,應該用加法.

  為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:

  1.同號兩數(shù)相加

  (1)某人向東走5米,再向東走3米,兩次一共走了多少米?

  這是求兩次行走的路程的和.

  5+3=8

  用數(shù)軸表示如圖

  從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.

  可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.

  (2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?

  顯然,兩次一共向西走了8米

  (-5)+(-3)=-8

  用數(shù)軸表示如圖

  從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.

  可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.

  總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.

  例如,(-4)+(-5),……同號兩數(shù)相加

  (-4)+(-5)=-( ),…取相同的符號

  4+5=9……把絕對值相加

  ∴ (-4)+(-5)=-9.

  口答練習:

  (1)舉例說明算式7+9的實際意義?

  (2)(-20)+(-13)=?

  (3)

  2.異號兩數(shù)相加

  (1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?

  由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.

  5+(-5)=0

  可知,互為相反數(shù)的兩個數(shù)相加,和為零.

  (2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?

  由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.

  就是 5+(-3)=2.

  (3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?

  由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.

  就是 3+(-5)=-2.

  請同學們想一想,異號兩數(shù)相加的法則是怎么規(guī)定的?強調和的符號是如何確定的?和的絕對值如何確定?

  最后歸納

  絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0.

  例如(-8)+5……絕對值不相等的異號兩數(shù)相加

  8>5

  (-8)+5=-( )……取絕對值較大的加數(shù)符號

  8-5=3 ……用較大的絕對值減去較小的絕對值

  ∴(-8)+5=-3.

  口答練習

  用算式表示:溫度由-4℃上升7℃,達到什么溫度.

  (-4)+7=3(℃)

  3.一個數(shù)和零相加

  (1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?

  顯然,5+0=5.結果向東走了5米.

  (2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?

  容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.

  請同學們把(1)、(2)畫出圖來

  由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).

  總結有理數(shù)加法的三個法則.學生看書,引導他們看有理數(shù)加法運算的三種情況.

  有理數(shù)加法運算的三種情況:

  特例:兩個互為相反數(shù)相加;

  (3)一個數(shù)和零相加.

  每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.

  (四)例題分析

  例1 計算(-3)+(-9).

  分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).

  解:(-3)+(-9)=-12.

  例2

  分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值.

  .(強調“兩個較大”“一個較小”)

解:#FormatImgID_13#

  解題時,先確定和的符號,后計算和的絕對值.

  (五)鞏固練習

  1.計算(口答)

  (1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);

  (5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;

  2.計算

  (1)5+(-22);(2)(-1.3)+(-8)

  (3)(-0.9)+1.5;(4)2.7+(-3.5)


相關文章:

1.初一數(shù)學教程視頻:有理數(shù)的加減法

2.有理數(shù)的加法教學設計

3.初一有理數(shù)的除法教學反思

4.七年級數(shù)學上冊第1、2章教案

5.湘教版七年級數(shù)學上冊教案免費下載

248769