初中數(shù)學知識點歸納總結
初中數(shù)學知識點歸納總結
數(shù)學不僅是初中的重要科目,也是高考的重要科目,所以在初中學好數(shù)學很重要。 以下是小編分享給大家的初中數(shù)學知識點歸納,希望可以幫到你!
初中數(shù)學知識點歸納
代數(shù)
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式.
2.列代數(shù)式的幾個注意事項(數(shù)學規(guī)范):
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應使用“×”乘,不用“·”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結果中把數(shù)寫在字母前面,如a×5應寫成5a;
(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a-b和b-a.
3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2.
有理數(shù)
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)Û0和正整數(shù);a>0Ûa是正數(shù);a<0Ûa是負數(shù);
a≥0Ûa是正數(shù)或0Ûa是非負數(shù);a≤0Ûa是負數(shù)或0Ûa是非正數(shù).
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)相反數(shù)的和為0Ûa+b=0Ûa、b互為相反數(shù).
初中數(shù)學解題思想
1. 函數(shù)與方程的思想
函數(shù)與方程的思想是中學數(shù)學最基本的思想。所謂函數(shù)的思想是指用運動變化的觀點去分析和研究數(shù)學中的數(shù)量關系,建立函數(shù)關系或構造函數(shù),再運用函數(shù)的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數(shù)學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。
2. 數(shù)形結合的思想
數(shù)與形在一定的條件下可以轉化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結構特征用代數(shù)的方法去解決。因此數(shù)形結合的思想對問題的解決有舉足輕重的作用。
3. 分類討論的思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養(yǎng)學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關鍵是化整為零,在局部討論降低難度。常見的類型:類型 1 :由數(shù)學概念引起的的討論,如實數(shù)、有理數(shù)、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;類型 2 :由數(shù)學運算引起的討論,如不等式兩邊同乘一個正數(shù)還是負數(shù)的問題;類型 3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;類型 4 :由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。類型 5 :由某些字母系數(shù)對方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對圖象的影響,二次項系數(shù)對圖象開口方向的影響,一次項系數(shù)對頂點坐標的影響,常數(shù)項對截距的影響等。
分類討論思想是對數(shù)學對象進行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。分類的步驟:①確定討論的對象及其范圍;②確定分類討論的分類標準;③按所分類別進行討論;④歸納小結、綜合得出結論。注意動態(tài)問題一定要先畫動態(tài)圖。
4 .轉化與化歸的思想
轉化與化歸市中學數(shù)學最基本的數(shù)學思想之一,數(shù)形結合的思想體現(xiàn)了數(shù)與形的轉化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉化;分類討論思想體現(xiàn)了局部與整體的相互轉化,所以以上三種思想也是轉化與化歸思想的具體呈現(xiàn)。
但是轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和后果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數(shù)學的問題等等使問題易于解決。
但是轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和后果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數(shù)學的問題等等使問題易于解決。
初中數(shù)學學習注意事項
一、 清楚做題的目的。數(shù)學包羅萬象,數(shù)學練習題更是數(shù)不勝數(shù),我們不可能把所有的習題一網(wǎng)打盡,所以做題前同學們一定要清楚做題的目的。大同初中全科培訓輔導班的老師講到,我們做題不是為了學會這一道題,而是通過習題練習總結出解題的思路,歸納出解題規(guī)律和方法,提升自己的解題能力。
二、做題時要先做真題。大同初中全科培訓輔導班老師講到,真題就是歷年來各個地區(qū)的考試題,也是我們要重點練習的題目。萬變不離其宗,雖然每年的考試題千變萬化,但是考察的知識點卻永遠是圍繞教學大綱的,一些重要的知識點每年都會重復考察。歷年的真題是非常有參考價值和知識指向的,可以幫助我們明確復習的方向。
三、做題時還要多做經(jīng)典題型。大同初中全科培訓輔導班老師解釋說,圍繞數(shù)學課本上的重點出的題型,就是經(jīng)典題,經(jīng)典題在考試中出現(xiàn)的機率非常高,也是老師們平時經(jīng)常著重要求我們練習的題目。對于老師交待和提到的經(jīng)典題型,同學們一定要給予十二分的重視,不僅要認真練習,保證自己完全掌握這些知識點,還要定期進行復習。
四、做錯過的題目要重視。大同初中全科培訓輔導班老師講到,對于自己做過的錯題,同學們一定要慎重對待,除了要分析錯誤原因,糾正錯誤的地方外,記錄到自己的筆記本上定期復習外,還要再多做些同類型的題目,加深自己的印象,保證自己已經(jīng)掌握了這方面的知識,不會再犯同樣的錯誤。
猜你喜歡: