初二數學下冊知識點總結歸納
初二是個很關鍵的時期,尤其是數學的學習!!勾股定理、四邊形、函數,可謂重點重重,這些知識點一定要掌握牢固!下面是學習啦小編分享給大家的初二數學下冊知識點,希望大家喜歡!
初二數學下冊知識點一
一、函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法:用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接
正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,如果
2、一次函數的圖像
所有一次函數的圖像都是一條直線。
3、一次函數、正比例函數圖像的主要特征:
一次函數y=kx+b的圖像是經過點(0,b)的直線;正比例函數y=kx的圖像是經過原點(0,0)的直線。(如下圖)
4. 正比例函數的性質
一般地,正比例函數y=kx有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數y=kx+b有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式y(tǒng)=kx(k≠0)中的常數k。確定一個一次函數,需要確定一次函數定義式y(tǒng)=kx+b(k≠0)中的常數k和b。解這類問題的一般方法是待定系數法。
圖像分析:
k>0,b>0,圖像經過一、二、三象限,y隨x的增大而增大。
k>0,b<0,圖像經過一、三、四象限,y隨x的增大而增大。
k<0,b>0, 圖像經過一、二、四象限,y隨x的增大而減小
k<0,b<0,圖像經過二、三、四象限,y隨x的增大而減小。
注:當b=0時,一次函數變?yōu)檎壤瘮?,正比例函數是一次函數的特例?/p>
初二數學下冊知識點二
四邊形
基本概念:
四邊形,四邊形的內角,四邊形的外角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對稱,中心對稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.
定理:中心對稱的有關定理
1.關于中心對稱的兩個圖形是全等形.
2.關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,被對稱中心平分.
3.如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱.
公式:
1.S菱形 =1/2ab=ch.(a、b為菱形的對角線 ,c為菱形的邊長 ,h為c邊上的高)
2.S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)
3.S梯形 =1/2(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為梯形的中位線)
常識:
1.若n是多邊形的邊數,則對角線條數公式是:n(n-3)/2
2.規(guī)則圖形折疊一般“出一對全等,一對相似”.
3.如圖:平行四邊形、矩形、菱形、正方形的從屬關系.
4.常見圖形中,
僅是軸對稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形…… ;
僅是中心對稱圖形的有:平行四邊形 …… ;
是雙對稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓 …… .
注意:線段有兩條對稱軸.
初二數學下冊知識點三
函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
猜你喜歡: