學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>復(fù)習(xí)方法>

人教版初中數(shù)學(xué)知識點匯總中考復(fù)習(xí)資料

時間: 欣怡1112 分享

  初中數(shù)學(xué)的復(fù)習(xí)資料已經(jīng)整理好,還在擔(dān)心考不好數(shù)學(xué)的同學(xué)不妨進(jìn)來看看。下面是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)知識點匯總中考復(fù)習(xí)資料的資料,希望大家喜歡!

  初中數(shù)學(xué)知識點匯總中考復(fù)習(xí)資料一

  第四章 直線形

  ★重點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

  ☆ 內(nèi)容提要☆

  一、 直線、相交線、平行線

  1.線段、射線、直線三者的區(qū)別與聯(lián)系

  從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。

  2.線段的中點及表示

  3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

  4.兩點間的距離(三個距離:點-點;點-線;線-線)

  5.角(平角、周角、直角、銳角、鈍角)

  6.互為余角、互為補(bǔ)角及表示方法

  7.角的平分線及其表示

  8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

  9.對頂角及性質(zhì)

  10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

  11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

  12.定義、命題、命題的組成

  13.公理、定理

  14.逆命題

  二、 三角形

  分類:⑴按邊分;

  ⑵按角分

  1.定義(包括內(nèi)、外角)

  2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,

  3.三角形的主要線段

  討論:①定義②××線的交點—三角形的×心③性質(zhì)

 ?、?高線②中線③角平分線④中垂線⑤中位線

 ?、乓话闳切微铺厥馊切危褐苯侨切?、等腰三角形、等邊三角形

  4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

  5.全等三角形

 ?、乓话闳切稳鹊呐卸?SAS、ASA、AAS、SSS)

 ?、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒?/p>

  6.三角形的面積

  ⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。

  7.重要輔助線

  ⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

  8.證明方法

  ⑴直接證法:綜合法、分析法

 ?、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論

 ?、亲C線段相等、角相等常通過證三角形全等

 ?、茸C線段倍分關(guān)系:加倍法、折半法

 ?、勺C線段和差關(guān)系:延結(jié)法、截余法

 ?、首C面積關(guān)系:將面積表示出來

  三、 四邊形

  分類表:

  1.一般性質(zhì)(角)

 ?、艃?nèi)角和:360°

 ?、祈槾芜B結(jié)各邊中點得平行四邊形。

  推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。

  推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。

 ?、峭饨呛停?60°

  2.特殊四邊形

  ⑴研究它們的一般方法:

 ?、破叫兴倪呅?、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

 ?、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形

  ┗→菱形——↑

 ?、葘蔷€的紐帶作用:

  3.對稱圖形

 ?、泡S對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))

  4.有關(guān)定理:①平行線等分線段定理及其推論1、2

 ?、谌切?、梯形的中位線定理

  ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

  5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。

  6.作圖:任意等分線段。

  四、 應(yīng)用舉例(略)

  初中數(shù)學(xué)知識點匯總中考復(fù)習(xí)資料二

  第五章 方程(組)

  ★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問題)

  ☆ 內(nèi)容提要☆

  一、 基本概念

  1.方程、方程的解(根)、方程組的解、解方程(組)

  2. 分類:

  二、 解方程的依據(jù)—等式性質(zhì)

  1.a=b←→a+c=b+c

  2.a=b←→ac=bc (c≠0)

  三、 解法

  1.一元一次方程的解法:去分母→去括號→移項→合并同類項→

  系數(shù)化成1→解。

  2. 元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

 ?、诩訙p法

  四、 一元二次方程

  1.定義及一般形式:

  2.解法:⑴直接開平方法(注意特征)

  ⑵配方法(注意步驟—推倒求根公式)

 ?、枪椒ǎ?/p>

 ?、纫蚴椒纸夥?特征:左邊=0)

  3.根的判別式:

  4.根與系數(shù)頂?shù)年P(guān)系:

  逆定理:若 ,則以 為根的一元二次方程是: 。

  5.常用等式:

  五、 可化為一元二次方程的方程

  1.分式方程

 ?、哦x

 ?、苹舅枷耄?/p>

 ?、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如, )

 ?、闰灨胺椒?/p>

  2.無理方程

  ⑴定義

  ⑵基本思想:

 ?、腔窘夥ǎ孩俪朔椒?注意技巧!!)②換元法(例, )⑷驗根及方法

  3.簡單的二元二次方程組

  由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

  六、 列方程(組)解應(yīng)用題

  一概述

  列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實際的一個重要方面。其具體步驟是:

 ?、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。

 ?、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

 ?、怯煤粗獢?shù)的代數(shù)式表示相關(guān)的量。

 ?、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。

 ?、山夥匠碳皺z驗。

 ?、蚀鸢?。

  綜上所述,列方程(組)解應(yīng)用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

  二常用的相等關(guān)系

  1. 行程問題(勻速運動)

  基本關(guān)系:s=vt

 ?、畔嘤鰡栴}(同時出發(fā)):

  + = ;

  ⑵追及問題(同時出發(fā)):

  若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則

 ?、撬泻叫校?;

  2. 配料問題:溶質(zhì)=溶液×濃度

  溶液=溶質(zhì)+溶劑

  3.增長率問題:

  4.工程問題:基本關(guān)系:工作量=工作效率×工作時間(常把工作量看著單位“1”)。

  5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

  三注意語言與解析式的互化

  如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴(kuò)大為(到)”、“擴(kuò)大了”、……

  又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。

  四注意從語言敘述中寫出相等關(guān)系。

  如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

  如,“小時”“分鐘”的換算;s、v、t單位的一致等。

  七、應(yīng)用舉例(略)

  初中數(shù)學(xué)知識點匯總中考復(fù)習(xí)資料三

  第六章 一元一次不等式(組)

  ★重點★一元一次不等式的性質(zhì)、解法

  ☆ 內(nèi)容提要☆

  1. 定義:a>b、a

  2. 一元一次不等式:ax>b、ax

  3. 一元一次不等式組:

  4. 不等式的性質(zhì):⑴a>b←→a+c>b+c

  ⑵a>b←→ac>bc(c>0)

 ?、莂>b←→ac<bc(c<0)

 ?、?傳遞性)a>b,b>c→a>c

  ⑸a>b,c>d→a+c>b+d.

  5.一元一次不等式的解、解一元一次不等式

  6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)

  7.應(yīng)用舉例(略)

猜你喜歡:

1.初中數(shù)學(xué)公式知識大全

2.初中數(shù)學(xué)教師必讀

3.人教版初中語文中考總復(fù)習(xí)教案

4.初中數(shù)學(xué)復(fù)習(xí)教學(xué)策略有哪些

5.初中數(shù)學(xué)學(xué)習(xí)方法總結(jié)

3710306