學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>中考輔導(dǎo)>

初中中考數(shù)學(xué)的知識點

時間: 舒淇4599 分享

知識點就是指知識、理論、道理、思想等的相對獨立的最小單元。下面小編為大家?guī)沓踔兄锌紨?shù)學(xué)的知識點,歡迎大家參考閱讀,希望能夠幫助到大家!

初中中考數(shù)學(xué)的知識點

二次函數(shù)的解析式有三種形式:

(1)一般式:

(2)頂點式:

(3)當拋物線與x軸有交點時,即對應(yīng)二次好方程有實根和存在時,根據(jù)二次三項式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點,則不能這樣表示。

注意:拋物線位置由決定.

(1)決定拋物線的開口方向

①開口向上.

②開口向下.

(2)決定拋物線與y軸交點的位置.

①圖象與y軸交點在x軸上方.

②圖象過原點.

③圖象與y軸交點在x軸下方.

(3)決定拋物線對稱軸的位置(對稱軸:)

①同號對稱軸在y軸左側(cè).

②對稱軸是y軸.

③異號對稱軸在y軸右側(cè).

(4)頂點坐標.

(5)決定拋物線與x軸的交點情況.、

①△>0拋物線與x軸有兩個不同交點.

②△=0拋物線與x軸有的公共點(相切).

③△<0拋物線與x軸無公共點.

(6)二次函數(shù)是否具有、最小值由a判斷.

①當a>0時,拋物線有最低點,函數(shù)有最小值.

②當a<0時,拋物線有點,函數(shù)有值.

(7)的符號的判定:

表達式,請代值,對應(yīng)y值定正負;

對稱軸,用處多,三種式子相約;

軸兩側(cè)判,左同右異中為0;

1的兩側(cè)判,左同右異中為0;

-1兩側(cè)判,左異右同中為0.

(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項,上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過頂點來尋找。

(9)對稱:關(guān)于x軸對稱的解析式為,關(guān)于y軸對稱的解析式為,關(guān)于原點軸對稱的解析式為,在頂點處翻折后的解析式為(a相反,定點坐標不變)。

(10)結(jié)論:①二次函數(shù)(與x軸只有一個交點二次函數(shù)的頂點在x軸上Δ=0;

②二次函數(shù)(的頂點在y軸上二次函數(shù)的圖象關(guān)于y軸對稱;

③二次函數(shù)(經(jīng)過原點,則。

(11)二次函數(shù)的解析式:

①一般式:(,用于已知三點。

②頂點式:,用于已知頂點坐標或最值或?qū)ΨQ軸。

(3)交點式:,其中、是二次函數(shù)與x軸的兩個交點的橫坐標。若已知對稱軸和在x軸上的截距,也可用此式。

中考數(shù)學(xué)知識點梳理

三角函數(shù)關(guān)系

倒數(shù)關(guān)系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關(guān)系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關(guān)系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函數(shù)關(guān)系六角形記憶法

構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

倒數(shù)關(guān)系

對角線上兩個函數(shù)互為倒數(shù);

商數(shù)關(guān)系

六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

平方關(guān)系

在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

銳角三角函數(shù)定義

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

正弦(sin)等于對邊比斜邊;sinA=a/c

余弦(cos)等于鄰邊比斜邊;cosA=b/c

正切(tan)等于對邊比鄰邊;tanA=a/b

余切(cot)等于鄰邊比對邊;cotA=b/a

正割(sec)等于斜邊比鄰邊;secA=c/b

余割(csc)等于斜邊比對邊。cscA=c/a

互余角的三角函數(shù)間的關(guān)系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方關(guān)系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

積的關(guān)系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒數(shù)關(guān)系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

圓的定理:

1不在同一直線上的三點確定一個圓。

2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3圓是以圓心為對稱中心的中心對稱圖形

4圓是定點的距離等于定長的點的集合

5圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

6圓的外部可以看作是圓心的距離大于半徑的點的集合

7同圓或等圓的半徑相等

8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

中考數(shù)學(xué)知識點整理

圓的定理:

1不在同一直線上的三點確定一個圓。

2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3圓是以圓心為對稱中心的中心對稱圖形

4圓是定點的距離等于定長的點的集合

5圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

6圓的外部可以看作是圓心的距離大于半徑的點的集合

7同圓或等圓的半徑相等

8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

1608120