北師大初中數(shù)學(xué)知識點
知識真是一件很奇妙的東西。你只是你只是淺嘗輒止,那么只會覺得枯燥乏味,像對待任務(wù)似的應(yīng)付學(xué)習(xí)。下面小編給大家分享一些北師大初中數(shù)學(xué)知識點,希望對大家有所幫助。
北師大初中數(shù)學(xué)知識點1
豐富的圖形世界
1.柱體:圓柱
2.錐體:圓錐
3. 球體:由球面圍成的(球面是曲面)
4. 幾何圖形是由點、線、面構(gòu)成的。
①幾何體與外界的接觸面或我們能看到的外表就是幾何體的表面。幾何的表面有平面和曲面;
②面與面相交得到線;
③線與線相交得到點。
5. 棱:在棱柱中,任何相鄰兩個面的交線都叫做棱。
6. 側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱,所有側(cè)棱長都相等。
7. 棱柱的上、下底面的形狀相同,側(cè)面的形狀都是長方形。
8. 根據(jù)底面圖形的邊數(shù),人們將棱柱分為三棱柱、四棱柱、五棱柱、六棱柱……它們底面圖形的形狀分別為三邊形、四邊形、五邊形、六邊形……
9. 長方體和正方體都是四棱柱。
10. 圓柱的表面展開圖是由兩個相同的圓形和一個長方形連成。
11. 圓錐的表面展開圖是由一個圓形和一個扇形連成。
12. 設(shè)一個多邊形的邊數(shù)為n(n≥3,且n為整數(shù)),從一個頂點出發(fā)的對角線有(n-3)條;可以把n邊形成(n-2)個三角形;這個n邊形共有條對角線。
◎13. 圓上兩點之間的部分叫做弧,弧是一條曲線。
◎14. 扇形,由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形。
15. 凸多邊形和凹多邊形都屬于多邊形。有弧或不封閉圖形都不是多邊形。
北師大初中數(shù)學(xué)知識點2
有理數(shù)及其運算
數(shù)軸的三要素:原點、正方向、單位長度(三者缺一不可)。
任何一個有理數(shù),都可以用數(shù)軸上的一個點來表示。(反過來,不能說數(shù)軸上所有的點都表示有理數(shù))
如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。(0的相反數(shù)是0)
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的側(cè),且到原點的距離相等。
數(shù)軸上兩點表示的數(shù),右邊的總比左邊的大。正數(shù)在原點的右邊,負數(shù)在原點的左邊。
絕對值的定義:一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點與原點的距離。數(shù)a的絕對值記作|a|。
正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的數(shù);0的絕對值是0。
絕對值的性質(zhì):除0外,絕對值為一正數(shù)的數(shù)有兩個,它們互為相反數(shù);
互為相反數(shù)的兩數(shù)(除0外)的絕對值相等;
任何數(shù)的絕對值總是非負數(shù),即|a|≥0
比較兩個負數(shù)的大小,絕對值大的反而小。比較兩個負數(shù)的大小的步驟如下:
①先求出兩個數(shù)負數(shù)的絕對值;
②比較兩個絕對值的大小;
③根據(jù)“兩個負數(shù),絕對值大的反而小”做出正確的判斷。
絕對值的性質(zhì):
①對任何有理數(shù)a,都有|a|≥0
②若|a|=0,則|a|=0,反之亦然
③若|a|=b,則a=±b
④對任何有理數(shù)a,都有|a|=|-a|
有理數(shù)加法法則:①同號兩數(shù)相加,取相同符號,并把絕對值相加。
②異號兩數(shù)相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數(shù)的符號,并用較大數(shù)的絕對值減去較小數(shù)的絕對值。
③一個數(shù)同0相加,仍得這個數(shù)。
加法的交換律、結(jié)合律在有理數(shù)運算中同樣適用。
靈活運用運算律,使用運算簡化,通常有下列規(guī)律:①互為相反的兩個數(shù),可以先相加;
②符號相同的數(shù),可以先相加;
③分母相同的數(shù),可以先相加;
④幾個數(shù)相加能得到整數(shù),可以先相加。
有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
有理數(shù)減法運算時注意兩“變”:①改變運算符號;
②改變減數(shù)的性質(zhì)符號(變?yōu)橄喾磾?shù))
有理數(shù)減法運算時注意一個“不變”:被減數(shù)與減數(shù)的位置不能變換,也就是說,減法沒有交換律。
有理數(shù)的加減法混合運算的步驟:
①寫成省略加號的代數(shù)和。在一個算式中,若有減法,應(yīng)由有理數(shù)的減法法則轉(zhuǎn)化為加法,然后再省略加號和括號;
②利用加法則,加法交換律、結(jié)合律簡化計算。
(注意:減去一個數(shù)等于加上這個數(shù)的相反數(shù),當有減法統(tǒng)一成加法時,減數(shù)應(yīng)變成它本身的相反數(shù)。)
有理數(shù)乘法法則:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。
②任何數(shù)與0相乘,積仍為0。
如果兩個數(shù)互為倒數(shù),則它們的乘積為1。(如:-2與 、 …等)
乘法的交換律、結(jié)合律、分配律在有理數(shù)運算中同樣適用。
有理數(shù)乘法運算步驟:①先確定積的符號;
②求出各因數(shù)的絕對值的積。
乘積為1的兩個有理數(shù)互為倒數(shù)。注意:
①零沒有倒數(shù)
②求分數(shù)的倒數(shù),就是把分數(shù)的分子分母顛倒位置。一個帶分數(shù)要先化成假分數(shù)。
③正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。
有理數(shù)除法法則:①兩個有理數(shù)相除,同號得正,異號得負,并把絕對值相除。
②0除以任何非0的數(shù)都得0。0不可作為除數(shù),否則無意義。
有理數(shù)的乘方
注意:①一個數(shù)可以看作是本身的一次方,如5=51;
②當?shù)讛?shù)是負數(shù)或分數(shù)時,要先用括號將底數(shù)括上,再在右上角寫指數(shù)。
乘方的運算性質(zhì):
①正數(shù)的任何次冪都是正數(shù);
②負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù);
③任何數(shù)的偶數(shù)次冪都是非負數(shù);
④1的任何次冪都得1,0的任何次冪都得0;
⑤-1的偶次冪得1;-1的奇次冪得-1;
⑥在運算過程中,首先要確定冪的符號,然后再計算冪的絕對值。
有理數(shù)混合運算法則:①先算乘方,再算乘除,最后算加減。
②如果有括號,先算括號里面的。
北師大初中數(shù)學(xué)知識3
字母表示數(shù)
代數(shù)式的概念:
用運算符號(加、減、乘除、乘方、開方等)把數(shù)與表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。
注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;
②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;
③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。
代數(shù)式的書寫格式:
①代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;
②數(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;
③帶分數(shù)與字母相乘時,應(yīng)先把帶分數(shù)化成假分數(shù)后與字母相乘,如應(yīng)寫作;
④數(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數(shù)式中出現(xiàn)除法運算時,一般按照分數(shù)的寫法來寫,如4÷(a-4)應(yīng)寫作;注意:分數(shù)線具有“÷”號和括號的雙重作用。
⑥在表示和(或)差的代差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米
代數(shù)式的系數(shù):
代數(shù)式中的數(shù)字中的數(shù)字因數(shù)叫做代數(shù)式的系數(shù)。如3x,4y的系數(shù)分別為3,4。
注意:①單個字母的系數(shù)是1,如a的系數(shù)是1;
②只含字母因數(shù)的代數(shù)式的系數(shù)是1或-1,如-ab的系數(shù)是-1。a3b的系數(shù)是1
代數(shù)式的項:
代數(shù)式表示6x2、-2x、-7的和,6x2、-2x、-7是它的項,其中把不含字母的項叫做常數(shù)項
注意:在交待某一項時,應(yīng)與前面的符號一起交待。
同類項:
所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
注意:①判斷幾個代數(shù)式是否是同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。這兩個條件缺一不可;
②同類項與系數(shù)無關(guān),與字母的排列順序無關(guān);
③幾個常數(shù)項也是同類項。
合差同類項:
把代數(shù)式中的同類項合并成一項,叫做合并同類項。
①合并同類項的理論根據(jù)是逆用乘法分配律;
②合并同類項的法則是把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
注意:
①如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后結(jié)果為0;
②不是同類項的不能合并,不能合并的項,在每步運算中都要寫上;
③只要不再有同類項,就是最后結(jié)果,結(jié)果還是代數(shù)式。
根據(jù)去括號法則去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號去掉,括號里各項都改變符號。
根據(jù)分配律去括號:
括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。
注意:
①去括號時,要連同括號前面的符號一起去掉;
②去括號時,首先要弄清楚括號前是“+”號還是“-”號;
③改變符號時,各項都變號;不改變符號時,各項都不變號。
北師大初中數(shù)學(xué)知識點4
絕對值
⒈絕對值的幾何定義
一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作|a|。
2.絕對值的代數(shù)定義
⑴一個正數(shù)的絕對值是它本身;⑵一個負數(shù)的絕對值是它的相反數(shù);⑶0的絕對值是0.
可用字母表示為:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可歸納為①:a≥0,<═>|a|=a(非負數(shù)的絕對值等于本身;絕對值等于本身的數(shù)是非負數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對值等于其相反數(shù);絕對值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題
如數(shù)軸所示,化簡下列各數(shù)
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.絕對值的性質(zhì)
任何一個有理數(shù)的絕對值都是非負數(shù),也就是說絕對值具有非負性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數(shù)是0.即:a=0<═>|a|=0;
⑵一個數(shù)的絕對值是非負數(shù),絕對值最小的數(shù)是0.即:|a|≥0;
⑶任何數(shù)的絕對值都不小于原數(shù)。即:|a|≥a;
⑷絕對值是相同正數(shù)的數(shù)有兩個,它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;
⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;
⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。
(非負數(shù)的常用性質(zhì):若幾個非負數(shù)的和為0,則有且只有這幾個非負數(shù)同時為0)
北師大初中數(shù)學(xué)知識點相關(guān)文章: