六年級下冊數(shù)學(xué)重要知識點筆記
關(guān)于對數(shù)學(xué)的學(xué)習(xí),在小學(xué)階段,相對于初中來說是比較簡單的,因為主要都是學(xué)的一些基本數(shù)學(xué)知識內(nèi)容, 下面小編為大家?guī)砹昙壪聝詳?shù)學(xué)重要知識點筆記,希望大家喜歡!
六年級下冊數(shù)學(xué)重要知識點
1、認(rèn)識圓柱和圓錐,掌握它們的基本特征。認(rèn)識圓柱的底面、側(cè)面和高。認(rèn)識圓錐的底面和高。
2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。
3、通過觀察、設(shè)計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學(xué)生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側(cè)面,底面是平面,側(cè)面是曲面。
5、圓柱的側(cè)面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當(dāng)?shù)酌嬷荛L和高相等時,側(cè)面沿高展開后是一個正方形。
6、圓柱的表面積=圓柱的側(cè)面積+底面積×2即S表=S側(cè)+S底×2或2πr×h+2×π。
7、圓柱的側(cè)面積=底面周長×高即S側(cè)=Ch或2πr×。
8、圓柱的體積=圓柱的底面積×高,即V=sh或πr2×。
進一法:實際中,使用的材料都要比計算的結(jié)果多一些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
9、圓錐只有一個底面,底面是個圓。圓錐的側(cè)面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離)
11、把圓錐的側(cè)面展開得到一個扇形。
12、圓錐的體積等于與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷。
13、常見的圓柱圓錐解決問題:
①壓路機壓過路面面積(求側(cè)面積);
②壓路機壓過路面長度(求底面周長);
③水桶鐵皮(求側(cè)面積和一個底面積);
④廚師帽(求側(cè)面積和一個底面積);通風(fēng)管(求側(cè)面積)。
小學(xué)數(shù)學(xué)正方形對角線怎么算
1、正方形對角線公式
正方形的對角線,與兩邊成形的是等腰直角三角形。如果正方形的邊長為a,那么對角線的長度就可以根據(jù)勾股定理計算,對角線=√2a。
正方形周長計算公式:邊長×4
正方形面積計算公式:邊長×邊長
2、正方形判定定理
(1)對角線相等的菱形是正方形。
(2)有一個角為直角的菱形是正方形。
(3)對角線互相垂直的矩形是正方形。
(4)一組鄰邊相等的矩形是正方形。
(5)一組鄰邊相等且有一個角是直角的平行四邊形是正方形。
數(shù)學(xué)列方程解答應(yīng)用題的步驟
(1)弄清題意,確定未知數(shù)并用x表示;
(2)找出題中的數(shù)量之間的相等關(guān)系;
(3)列方程,解方程;
(4)檢查或驗算,寫出答案。
六年級下冊數(shù)學(xué)知識點筆記
典型應(yīng)用題:具有獨特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。
(1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關(guān)鍵:在于確定總數(shù)量和與之相對應(yīng)的總份數(shù)。
算術(shù)平均數(shù):已知幾個不相等的同類量和與之相對應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。
加權(quán)平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。
數(shù)量關(guān)系式(部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。
差額平均數(shù):是把各個大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。
數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù)數(shù)與各數(shù)之差的和÷總份數(shù)=數(shù)應(yīng)給數(shù)數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。
例:一輛汽車以每小時100千米的速度從甲地開往乙地,又以每小時60千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為100,所用的時間為1÷100,汽車從乙地到甲地速度為60千米,所用的時間是1÷60,汽車共行的時間為1÷100 +1÷60,汽車的平均速度為2 ÷(1÷100 +1÷60) =75 (千米)
(2)歸一問題:已知相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!?/p>
兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!?/p>
正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結(jié)果的歸一問題。
反歸一問題:用等分除法求出“單一量”之后,再用除法計算結(jié)果的歸一問題。
解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。
數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一)
總數(shù)量÷單一量=份數(shù)(反歸一)
例一個織布工人,在七月份織布4774米,照這樣計算,織布6930米,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題:是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。
特點:兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。
數(shù)量關(guān)系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量。
例修一條水渠,原計劃每天修800米,6天修完。實際4天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
(4)和差問題:已知大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應(yīng)用題叫做和差問題。
解題關(guān)鍵:是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和(或兩個小數(shù)的和),然后再求另一個數(shù)。
解題規(guī)律:(和+差)÷2 =大數(shù)大數(shù)-差=小數(shù)
(和-差)÷2=小數(shù)和-小數(shù)=大數(shù)
例某加工廠甲班和乙班共有工人94人,因工作需要臨時從乙班調(diào)46人到甲班工作,這時乙班比甲班人數(shù)少12人,求原來甲班和乙班各有多少人?
分析:從乙班調(diào)46人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成2個乙班,即9 4 - 12,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調(diào)出46人之前應(yīng)該為41+46=87 (人),甲班為9 4 - 87=7 (人)
(5)和倍問題:已知兩個數(shù)的和及它們之間的倍數(shù)關(guān)系,求兩個數(shù)各是多少的應(yīng)用題,叫做和倍問題。
解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的數(shù)量是多少。根據(jù)另一個數(shù)(也可能是幾個數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個數(shù)(或幾個數(shù))的數(shù)量。
解題規(guī)律:和÷倍數(shù)和=標(biāo)準(zhǔn)數(shù)標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個數(shù)
例:汽車運輸場有大小貨車115輛,大貨車比小貨車的5倍多7輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的5倍還多7輛,這7輛也在總數(shù)115輛內(nèi),為了使總數(shù)與( 5+1 )倍對應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛。
列式為( 115-7 )÷( 5+1 ) =18 (輛),18 × 5+7=97 (輛)
(6)差倍問題:已知兩個數(shù)的差,及兩個數(shù)的倍數(shù)關(guān)系,求兩個數(shù)各是多少的應(yīng)用題。
解題規(guī)律:兩個數(shù)的差÷(倍數(shù)-1 )=標(biāo)準(zhǔn)數(shù)標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個數(shù)。
例甲乙兩根繩子,甲繩長63米,乙繩長29米,兩根繩剪去同樣的長度,結(jié)果甲所剩的長度是乙繩長的3倍,甲乙兩繩所剩長度各多少米?各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的3倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標(biāo)準(zhǔn)數(shù)。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度,17 × 3=51 (米)…甲繩剩下的長度,29-17=12 (米)…剪去的長度。
(7)行程問題:關(guān)于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。
解題關(guān)鍵及規(guī)律:
同時同地相背而行:路程=速度和×?xí)r間。同時相向而行:相遇時間=速度和×?xí)r間
同時同向而行(速度慢的在前,快的在后):追及時間=路程速度差。
同時同地同向而行(速度慢的在后,快的在前):路程=速度差×?xí)r間。
例甲在乙的后面28千米,兩人同時同向而行,甲每小時行16千米,乙每小時行9千米,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的后面28千米(追擊路程),28千米里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式2 8 ÷ ( 16-9 ) =4 (小時)
(8)流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。水速:水流動的速度。
順?biāo)俣龋捍樍骱叫械乃俣?。逆水速度:船逆流航行的速度?/p>
順?biāo)?船速+水速;逆速=船速-水速
解題關(guān)鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當(dāng)作和差問題解答。解題時要以水流為線索。
解題規(guī)律:船行速度=(順?biāo)俣?逆流速度)÷2;流水速度=(順流速度逆流速度)÷2
路程=順流速度×順流航行所需時間;路程=逆流速度×逆流航行所需時間
例一只輪船從甲地開往乙地順?biāo)校啃r行28千米,到乙地后,又逆水航行,回到甲地。逆水比順?biāo)嘈?小時,已知水速每小時4千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r間,或者逆水速度和逆水的時間。已知順?biāo)俣群退魉俣?,因此不難算出逆水的速度,但順?biāo)玫臅r間,逆水所用的時間不知道,只知道順?biāo)饶嫠儆?小時,抓住這一點,就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r間,這樣就能算出甲乙兩地的路程。列式為284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5(小時) 28 ×5=140 (千米)。
(9)還原問題:已知某未知數(shù),經(jīng)過一定的四則運算后所得的結(jié)果,求這個未知數(shù)的應(yīng)用題,我們叫做還原問題。
解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。
解題規(guī)律:從最后結(jié)果出發(fā),采用與原題中相反的運算(逆運算)方法,逐步推導(dǎo)出原數(shù)。
根據(jù)原題的運算順序列出數(shù)量關(guān)系,然后采用逆運算的方法計算推導(dǎo)出原數(shù)。
解答還原問題時注意觀察運算的順序。若需要先算加減法,后算乘除法時別忘記寫括號。
例某小學(xué)三年級四個班共有學(xué)生168人,如果四班調(diào)3人到三班,三班調(diào)6人到二班,二班調(diào)6人到一班,一班調(diào)2人到四班,則四個班的人數(shù)相等,四個班原有學(xué)生多少人?
分析:當(dāng)四個班人數(shù)相等時,應(yīng)為168 ÷ 4,以四班為例,它調(diào)給三班3人,又從一班調(diào)入2人,所以四班原有的人數(shù)減去3再加上2等于平均數(shù)。四班原有人數(shù)列式為168 ÷ 4-2+3=43 (人)
一班原有人數(shù)列式為168 ÷ 4-6+2=38 (人);二班原有人數(shù)列式為168 ÷ 4-6+6=42 (人)三班原有人數(shù)列式為168 ÷ 4-3+6=45 (人)。
(10)植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。
解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按基本公式進行計算。
解題規(guī)律:沿線段植樹:
_棵樹=段數(shù)+1棵樹=總路程÷株距+1 ;_株距=總路程÷(棵樹-1)總路程=株距×(棵樹-1)
沿周長植樹:
棵樹=總路程÷株距株距=總路程÷棵樹總路程=株距×棵樹
例沿公路一旁埋電線桿301根,每相鄰的兩根的間距是50米。后來全部改裝,只埋了201根。求改裝后每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11)盈虧問題:是在等分除法的基礎(chǔ)上發(fā)展起來的。他的特點是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余,或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫盈虧問題。
解題關(guān)鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除后一個差,就得到分配者的數(shù),進而再求得物品數(shù)。
解題規(guī)律:總差額÷每人差額=人數(shù)
總差額的求法可以分為以下四種情況:
第一次多余,第二次不足,總差額=多余+不足
第一次正好,第二次多余或不足,總差額=多余或不足
第一次多余,第二次也多余,總差額=大多余-小多余
第一次不足,第二次也不足,總差額=大不足-小不足
例參加美術(shù)小組的同學(xué),每個人分的相同的支數(shù)的色筆,如果小組10人,則多25支,如果小組有12人,色筆多余5支。求每人分得幾支?共有多少支色鉛筆?
分析:每個同學(xué)分到的色筆相等。這個活動小組有12人,比10人多2人,而色筆多出了( 25-5 ) =20支,2個人多出20支,一個人分得10支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應(yīng)用題被稱為“年齡問題”。
解題關(guān)鍵:年齡問題與和差、和倍、差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種“差不變”的問題,解題時,要善于利用差不變的特點。
例父親48歲,兒子21歲。問幾年前父親的年齡是兒子的4倍?
分析:父子的年齡差為48-21=27 (歲)。由于幾年前父親年齡是兒子的4倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的4倍。列式為:21-( 48-21 )÷( 4-1 ) =12 (年)
(13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。
解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)
兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2
如果假設(shè)全是兔子,可以有下面的式子:
雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2
兔的頭數(shù)=總頭數(shù)-雞的只數(shù)
例雞兔同籠共50個頭,170條腿。問雞兔各有多少只?
兔子只數(shù)( 170-2 × 50 )÷ 2 =35 (只)雞的只數(shù)50-35=15 (只)
六年級下冊數(shù)學(xué)基礎(chǔ)的知識點
一、抓基礎(chǔ)
基礎(chǔ)知識,是整個數(shù)學(xué)知識體系中最根本的基石。主要應(yīng)做到以下幾點:歸納和梳理教材知識結(jié)構(gòu),記清概念,基礎(chǔ)夯實。數(shù)學(xué)≠做題,千萬不要忽視最基本的概念、公理、定理和公式的記憶。特別是選擇題,要靠清晰的概念來明辨對錯,如果概念不清就會感覺模棱兩可,最終造成誤選。因此,要把教材中的概念整理出來,列出各單元的復(fù)習(xí)提綱。通過讀一讀、記一記等方法加深印象,對容易混淆的概念更要徹底搞清,不留隱患。從現(xiàn)在起每天10題選擇,10題填空讓學(xué)生把知識更熟練,更加準(zhǔn)確。
二、精做精練
多做精選模擬試題,做幾套精選的模擬題,或者做幾套往年真題,因為這些試卷的知識點的分布比較合理到位,這樣能夠使得整個知識體系得到優(yōu)化與完善,基礎(chǔ)與能力得到升華,速度得到提高,對知識的把握更為靈活。通過模擬套題訓(xùn)練,掌握好答題方法和答題時間,在做模擬試卷時就應(yīng)該學(xué)會統(tǒng)籌安排時間,先易后難,不要在一道題上花費太多的時間。在平時就養(yǎng)成良好的解題習(xí)慣,和良好的心態(tài),這樣可以在小升初實戰(zhàn)中得以發(fā)揮自己的最佳水平。
三、查漏補缺
在做題的同時,會有許多錯題產(chǎn)生。此時整理、歸納、訂正錯題是必不可少,甚至訂正比做題更加重要,因此不僅要寫出錯解的過程和訂正后的正確過程,更希望能注明一下錯誤的原因。比如,哪些是知識點掌握不夠,哪些是方法運用不當(dāng)?shù)?。同時進行診斷性練習(xí),以尋找問題為目的。你可將各種測試卷中解錯的題目按選擇題、填空題和解答題放在一起比較,診斷一下哪類題容易出錯,從而找出帶有共性的錯誤和不足,及時查漏補缺,才能將問題解決在考前。事實上,這應(yīng)該是一個完整的反思過程,也是不少高分考生的經(jīng)驗之談。
四、強化訓(xùn)練,提高能力
選擇能覆蓋小升初知識點,數(shù)學(xué)思想,數(shù)學(xué)方法的經(jīng)典題目,標(biāo)準(zhǔn)難度的試卷,讓學(xué)生熟悉考試的內(nèi)容,題型,時間安排,表達等,找出下一階段的問題從而解決。
五、復(fù)習(xí)時間安排
第一階段:分類復(fù)習(xí)
1.數(shù)和數(shù)的運算:重點在一系列概念和分?jǐn)?shù)、小數(shù)、四則運算和簡便運算。
2.代數(shù)的初步知識:重點在掌握簡易方程及比和比例的辨析。
3.解決問題:重點在問題的分析和解題技能的發(fā)展商,難點是分?jǐn)?shù)的實際應(yīng)用。
4.量的計量:如長度、面積、體積、重量、時間單位,各種類型名數(shù)的改寫。
5.幾何初步知識:對公式的應(yīng)用以及思維拓展。(平面圖形的認(rèn)識如三角形三邊關(guān)系、有關(guān)角的關(guān)系等)、平面圖形的周長和面積等。
6.簡單的統(tǒng)計:對圖表的認(rèn)識和理解。
第二階段:模擬訓(xùn)練
1.四則混合運算、簡算、解方程、解比例的'強化訓(xùn)練。
2.幾何公式的實際綜合應(yīng)用。
六年級下冊數(shù)學(xué)重要知識點筆記相關(guān)文章:
★ 小學(xué)六年級數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)與總結(jié)
★ 人教版六年級數(shù)學(xué)(下冊)期末知識要點
★ 人教版六年級數(shù)學(xué)的知識點總結(jié)
★ 人教版六年級數(shù)學(xué)下冊總復(fù)習(xí)資料
★ 六年級下冊數(shù)學(xué)復(fù)習(xí)資料