學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初三學(xué)習(xí)方法>九年級(jí)數(shù)學(xué)>

華東師版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間: 躍瀚0 分享

學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學(xué)習(xí)方法其實(shí)都是一樣的,不斷的記憶與練習(xí),使知識(shí)刻在腦海里。下面是小編給大家整理的一些九年級(jí)數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。

九年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納

知識(shí)點(diǎn)1.概念

把形狀相同的圖形叫做相似圖形。(即對(duì)應(yīng)角相等、對(duì)應(yīng)邊的比也相等的圖形)

解讀:(1)兩個(gè)圖形相似,其中一個(gè)圖形可以看做由另一個(gè)圖形放大或縮小得到.

(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.

(3)判斷兩個(gè)圖形是否相似,就是看這兩個(gè)圖形是不是形狀相同,與其他因素?zé)o關(guān).

知識(shí)點(diǎn)2.比例線段

對(duì)于四條線段a,b,c,d,如果其中兩條線段的長(zhǎng)度的比與另兩條線段的長(zhǎng)度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡(jiǎn)稱比例線段.

知識(shí)點(diǎn)3.相似多邊形的性質(zhì)

相似多邊形的性質(zhì):相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等.

解讀:(1)正確理解相似多邊形的定義,明確“對(duì)應(yīng)”關(guān)系.

(2)明確相似多邊形的“對(duì)應(yīng)”來自于書寫,且要明確相似比具有順序性.

知識(shí)點(diǎn)4.相似三角形的概念

對(duì)應(yīng)角相等,對(duì)應(yīng)邊之比相等的三角形叫做相似三角形.

解讀:(1)相似三角形是相似多邊形中的一種;

(2)應(yīng)結(jié)合相似多邊形的性質(zhì)來理解相似三角形;

(3)相似三角形應(yīng)滿足形狀一樣,但大小可以不同;

(4)相似用“∽”表示,讀作“相似于”;

(5)相似三角形的對(duì)應(yīng)邊之比叫做相似比.

知識(shí)點(diǎn)5.相似三角的判定方法

(1)定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似;

(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長(zhǎng)線)所構(gòu)成的三角形與原三角形相似.

(3)如果一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似.

(4)如果一個(gè)三角的兩條邊與另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似.

(5)如果一個(gè)三角形的三條邊分別與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似.

(6)直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形都相似.

知識(shí)點(diǎn)6.相似三角形的性質(zhì)

(1)對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等;

(2)對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比,對(duì)應(yīng)角平分線的比都等于相似比;

(3)相似三角形周長(zhǎng)之比等于相似比;面積之比等于相似比的平方.

(4)射影定理

初三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2021

半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。圓上若有一切線,切點(diǎn)圓心半徑連。

切線長(zhǎng)度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。

是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。

圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。

要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。

如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。

若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。

輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。

基本作圖很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)常總結(jié)方法顯。

切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。

虛心勤學(xué)加苦練,成績(jī)上升成直線。

初三數(shù)學(xué)重要知識(shí)點(diǎn)整理

【反比例函數(shù)】

定義:形如函數(shù)y=k/x(k為常數(shù)且k≠0)叫做反比例函數(shù),其中k叫做比例系數(shù),x是自變量,y是自變量x的函數(shù),x的取值范圍是不等于0的一切實(shí)數(shù)。

反比例函數(shù)的一般形式

一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。

其中,x是自變量,y是函數(shù)。由于x在分母上,故取x≠0的一切實(shí)數(shù),看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。

補(bǔ)充說明:1.反比例函數(shù)的解析式又可以寫成:(k是常數(shù),k≠0).

2.要求出反比例函數(shù)的解析式,利用待定系數(shù)法求出k即可.

反比例函數(shù)解析式的特征

⑴等號(hào)左邊是函數(shù),等號(hào)右邊是一個(gè)分式。分子是不為零的常數(shù)(也叫做比例系數(shù)),分母中含有自變量,且指數(shù)為1。

⑵比例系數(shù)

⑶自變量的取值為一切非零實(shí)數(shù)。

⑷函數(shù)的取值是一切非零實(shí)數(shù)。

華東師版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)相關(guān)文章

華東師大九年級(jí)數(shù)學(xué)期末復(fù)習(xí)計(jì)劃

華師版初一數(shù)學(xué)知識(shí)點(diǎn)

學(xué)習(xí)方法指導(dǎo)與技巧總結(jié)

初一學(xué)習(xí)方法指導(dǎo)與學(xué)習(xí)方法總結(jié)

華師小升初數(shù)學(xué)真題試卷及答案

關(guān)于初中數(shù)學(xué)教學(xué)的反思案例

八年級(jí)上冊(cè)華師版數(shù)學(xué)思維導(dǎo)圖

初中數(shù)學(xué)教學(xué)反思案例分析

華東師版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)

學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學(xué)習(xí)方法其實(shí)都是一樣的,不斷的記憶與練習(xí),使知識(shí)刻在腦海里。下面是小編給大家整理的一些九年級(jí)數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 九年級(jí)數(shù)學(xué)浙教版知識(shí)點(diǎn)
    九年級(jí)數(shù)學(xué)浙教版知識(shí)點(diǎn)

    對(duì)世界上的一切學(xué)問與知識(shí)的掌握也并非難事,只要持之以恒地學(xué)習(xí),努力掌握規(guī)律,達(dá)到熟悉的境地,就能融會(huì)貫通,運(yùn)用自如。學(xué)習(xí)需要持之以恒。下

  • 初中九年級(jí)數(shù)學(xué)的知識(shí)點(diǎn)
    初中九年級(jí)數(shù)學(xué)的知識(shí)點(diǎn)

    天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大

  • 九年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納
    九年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納

    學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學(xué)習(xí)方法其實(shí)都是一樣的,不斷的記憶與練習(xí),使知識(shí)刻在腦海里。

  • 九年級(jí)數(shù)學(xué)課本知識(shí)點(diǎn)
    九年級(jí)數(shù)學(xué)課本知識(shí)點(diǎn)

    知識(shí)是取之不盡,用之不竭的。只有限度地挖掘它,才能體會(huì)到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識(shí)都需要大量的記憶和練習(xí)來鞏固。雖然辛苦,但也伴隨著

1148820