2020高中三年數學知識點順口溜與公式大全
對于眾多高中生來說,數學是一座巨大的攔路虎,如何高效地學習數學是大家都很頭疼的問題,接下來小編為大家整理了高三數學學習內容,一起來看看吧!
2020高中三年數學知識點順口溜
數學思想方法論
中學數學一線牽,代數幾何兩珠連;
三個基本記心間,四種能力非等閑。
常規(guī)五法天天練,策略六項時時變;
精研數學七思想,誘思導學樂無邊。
一線:函數一條主線(貫穿教材始終)
二珠:代數、幾何珠聯(lián)璧合(注重知識交匯)
三基:方法(熟) 知識(牢) 技能(巧)
四能力:概念運算(準確)、邏輯推理(嚴謹)、空間想象(豐富)、分解問題(靈活)
五法:換元法、配方法、待定系數法、分析法、歸納法。
六策略:以簡馭繁,正難則反,以退為進,化異為同,移花接木,以靜思動。
七思想:函數方程最重要,分類整合常用到,
數形結合千般好,化歸轉化離不了;
有限自將無限描,或然終被必然表,
特殊一般多辨證,知識交匯步步高。
函數學習口訣
正比例函數是直線,圖象一定過原點,
k的正負是關鍵,決定直線的象限,
負k經過二四限,x增大y在減,
上下平移k不變,由引得到一次線,
向上加b向下減,圖象經過三個限,
兩點決定一條線,選定系數是關鍵。
反比例函數雙曲線,待定只需一個點,
正k落在一三限,x增大y在減,
圖象上面任意點,矩形面積都不變,
對稱軸是角分線,x、y的順序可交換。
二次函數拋物線,選定需要三個點,
a的正負開口判,c的大小y軸看,
△的符號最簡便,x軸上數交點,
a、b同號軸左邊,拋物線平移a不變,
頂點牽著圖象轉,三種形式可變換,
配方法作用最關鍵。
正多邊形訣竅歌
份相等分割圓,n值必須大于三,
依次連接各分點,內接正n邊形在眼前。
經過分點做切線,切線相交n個點。
n個交點做頂點,外切正n邊形便出現。
正n邊形很美觀,它有內接、外切圓,
內接、外切都唯一,兩圓還是同心圓,
它的圖形軸對稱,n條對稱軸 都過圓心點,
如果n值為偶數,中心對稱很方便。
正n邊形做計算,邊心距、半徑是關鍵,
內切、外接圓半徑,邊心距、半徑分別換,
分成直角三角形2n個整,依此計算便簡單。
圓中比例線段
遇等積,改等比,橫找豎找定相似;
不相似,別生氣,等線等比來代替,
遇等比,改等積,引用射影和圓冪,
平行線,轉比例,兩端各自找聯(lián)系。
函數與數列
數列函數子母胎,等差等比自成排。
數列求和幾多法?通項遞推思路開;
變量分離無好壞,函數復合有內外。
同增異減定單調,區(qū)間挖隱最值來。
二項式定理
二項乘方知多少,萬里源頭通項找;
展開三定項指系,組合系數楊輝角。
整除證明底變妙,二項求和特值巧;
兩端對稱誰最大?主峰一覽眾山小。
立體幾何
多點共線兩面交,多線共面一法巧;
空間三垂優(yōu)弦大,球面兩點劣弧小。
線線關系線面找,面面成角線線表;
等積轉化連射影,能割善補架通橋。
方程與不等式
函數方程不等根,常使參數范圍生;
一正二定三相等,均值定理最值成。
參數不定比大小,兩式不同三法證;
等與不等無絕對,變量分離方有恒。
高中數學公式大全
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac>0 注:方程有兩個不等的實根
b2-4ac<0 注:方程沒有實根,有共軛復數根
高中數學兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
高中數學正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
高中數學余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
高中數學圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
高中數學圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
高中數學拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
高中數學直棱柱側面積 S=c*h 斜棱柱側面積 S=c'*h
高中數學正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'
高中數學圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
高中數學圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
高中數學弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
高中數學錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
高中數學高中數學斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長
高中數學柱體體積公式 V=s*h 圓柱體 V=pi*r2h