高二物理下學期期末知識點
高一的新鮮過了,距離高考尚遠,最容易玩的瘋、走的遠的時候。導致:心理上的迷茫期,學業(yè)上進的緩慢期,自我約束的松散期,易誤入歧路,大浪淘沙的篩選期。因此,直面高二的挑戰(zhàn),認清高二,認清高二的自己,認清高二的任務,顯得意義十分重大而迫切。小編高二頻道為你整理了《高二物理下學期知識點整理》,希望對你的學習有所幫助!
高二物理下學期期末知識點
一、起電方法的實驗探究
1.物體有了吸引輕小物體的性質,就說物體帶了電或有了電荷。
2.兩種電荷
自然界中的電荷有2種,即正電荷和負電荷。如:絲綢摩擦過的玻璃棒所帶的電荷是正電荷;用干燥的毛皮摩擦過的硬橡膠棒所帶的電荷是負電荷。同種電荷相斥,異種電荷相吸。
相互吸引的一定是帶異種電荷的物體嗎?不一定,除了帶異種電荷的物體相互吸引之外,帶電體有吸引輕小物體的性質,這里的“輕小物體”可能不帶電。
3.起電的方法
使物體起電的方法有三種:摩擦起電、接觸起電、感應起電
(1)摩擦起電:兩種不同的物體原子核束縛電子的能力并不相同.兩種物體相互摩擦時,束縛電子能力強的物體就會得到電子而帶負電,束縛電子能力弱的物體會失去電子而帶正電.(正負電荷的分開與轉移)
(2)接觸起電:帶電物體由于缺少(或多余)電子,當帶電體與不帶電的物體接觸時,就會使不帶電的物體上失去電子(或得到電子),從而使不帶電的物體由于缺少(或多余)電子而帶正電(負電).(電荷從物體的一部分轉移到另一部分)
(3)感應起電:當帶電體靠近導體時,導體內的自由電子會向靠近或遠離帶電體的方向移動.(電荷從一個物體轉移到另一個物體)
三種起電的方式不同,但實質都是發(fā)生電子的轉移,使多余電子的物體(部分)帶負電,使缺少電子的物體(部分)帶正電.在電子轉移的過程中,電荷的總量保持不變。
二、電荷守恒定律
1.電荷量:電荷的多少。在國際單位制中,它的單位是庫侖,符號是C。
2.元電荷:電子和質子所帶電荷的絕對值1.6×10-19C,所有帶電體的電荷量等于e或e的整數倍。(元電荷就是帶電荷量足夠小的帶電體嗎?提示:不是,元電荷是一個抽象的概念,不是指的某一個帶電體,它是指電荷的電荷量.另外任何帶電體所帶電荷量是1.6×10-19C的整數倍。)
3.比荷:粒子的電荷量與粒子質量的比值。
4.電荷守恒定律
表述1:電荷守恒定律:電荷既不能憑空產生,也不能憑空消失,只能從一個物體轉移到另一個物體,或從物體的一部分轉移到另一部分,在轉移的過程中,電荷的總量保持不變。
表述2:在一個與外界沒有電荷交換的系統(tǒng)內,正、負電荷的代數和保持不變。
例:有兩個完全相同的帶電絕緣金屬小球A、B,分別帶電荷量為QA=6.4×10-9C,QB=-3.2×10-9C,讓兩個絕緣小球接觸,在接觸過程中,電子如何轉移并轉移了多少?
高二物理下學期期末知識點
一、焦耳定律
1.定義:電流流過導體產生的熱量跟電流的平方、導體的電阻和通電時間成正比。
2.意義:電流通過導體時所產生的電熱。
3.適用條件:任何電路。
二、電阻定律
1.電阻定律:在一定溫度下,導體的電阻與導體本身的長度成正比,跟導體的橫截面積成反比。
2.意義:電阻的決定式,提供了一種測電阻率的方法。
3.適用條件:適用于粗細均勻的金屬導體和濃度均與的電解液。
三、歐姆定律
1.歐姆定律:導體中電流I跟導體兩端的電壓U成正比,跟它的電阻R成反比。
2.意義:電流的決定式,提供了一種測電阻的方法。
3.適用條件:金屬、電解液(對氣體不適用)。適用于純電阻電路。
四、庫倫定律
五、電阻率
1.意義:電阻率是反映導體材料導電性能的物理量。材料導電性能的好壞用電阻率p表示,電阻率越小,導電性能越好,電阻率越大,表明在相同長度,相同橫截面積的情況下,導體電阻就越大。
2.決定因素:由材料的種類和溫度決定,與材料的長短、粗細無關。一般常用合金的電阻率大于組成它的純金屬的電阻率。
3.與溫度的關系:各種材料的電阻率都隨溫度的變化而變化。金屬的電阻率隨溫度的升高而增大(可用于制造電阻溫度計);半導體和電介質的電阻率隨溫度的升高而減小(半導體的電阻率隨溫度的變化較大,可用于制造熱敏電阻)。
高二物理下學期期末知識點
萬有引力是由于物體具有質量而在物體之間產生的一種相互作用。它的大小和物體的質量以及兩個物體之間的距離有關。物體的質量越大,它們之間的萬有引力就越大;物體之間的距離越遠,它們之間的萬有引力就越小。
兩個可看作質點的物體之間的萬有引力,可以用以下公式計算:F=GmM/r^2,即萬有引力等于引力常量乘以兩物體質量的乘積除以它們距離的平方。其中G代表引力常量,其值約為6.67×10的負11次方單位N·m2/kg2。為英國科學家卡文迪許通過扭秤實驗測得。
萬有引力的推導:若將行星的軌道近似的看成圓形,從開普勒第二定律可得行星運動的角速度是一定的,即:
ω=2π/T(周期)
如果行星的質量是m,離太陽的距離是r,周期是T,那么由運動方程式可得,行星受到的力的作用大小為
mrω^2=mr(4π^2)/T^2
另外,由開普勒第三定律可得
r^3/T^2=常數k'
那么沿太陽方向的力為
mr(4π^2)/T^2=mk'(4π^2)/r^2
由作用力和反作用力的關系可知,太陽也受到以上相同大小的力。從太陽的角度看,
(太陽的質量M)(k'')(4π^2)/r^2
是太陽受到沿行星方向的力。因為是相同大小的力,由這兩個式子比較可知,k'包含了太陽的質量M,k''包含了行星的質量m。由此可知,這兩個力與兩個天體質量的乘積成正比,它稱為萬有引力。
如果引入一個新的常數(稱萬有引力常數),再考慮太陽和行星的質量,以及先前得出的4·π2,那么可以表示為
萬有引力=GmM/r^2
兩個通常物體之間的萬有引力極其微小,我們察覺不到它,可以不予考慮。比如,兩個質量都是60千克的人,相距0.5米,他們之間的萬有引力還不足百萬分之一牛頓,而一只螞蟻拖動細草梗的力竟是這個引力的1000倍!但是,天體系統(tǒng)中,由于天體的質量很大,萬有引力就起著決定性的作用。在天體中質量還算很小的地球,對其他的物體的萬有引力已經具有巨大的影響,它把人類、大氣和所有地面物體束縛在地球上,它使月球和人造地球衛(wèi)星繞地球旋轉而不離去。
重力,就是由于地面附近的物體受到地球的萬有引力而產生的。
任意兩個物體或兩個粒子間的與其質量乘積相關的吸引力。自然界中最普遍的力。簡稱引力,有時也稱重力。在粒子物理學中則稱引力相互作用和強力、弱力、電磁力合稱4種基本相互作用。引力是其中最弱的一種,兩個質子間的萬有引力只有它們間的電磁力的1/1035,質子受地球的引力也只有它在一個不強的電場1000伏/米的電磁力的1/1010。因此研究粒子間的作用或粒子在電子顯微鏡和加速器中運動時,都不考慮萬有引力的作用。一般物體之間的引力也是很小的,例如兩個直徑為1米的鐵球,緊靠在一起時,引力也只有1.14×10^(-3)牛頓,相當于0.03克的一小滴水的重量。但地球的質量很大,這兩個鐵球分別受到4×104牛頓的地球引力。所以研究物體在地球引力場中的運動時,通常都不考慮周圍其他物體的引力。天體如太陽和地球的質量都很大,乘積就更大,巨大的引力就能使龐然大物繞太陽轉動。引力就成了支配天體運動的的一種力。恒星的形成,在高溫狀態(tài)下不彌散反而逐漸收縮,最后坍縮為白矮星、中子星和黑洞,也都是由于引力的作用,因此引力也是促使天體演化的重要因素。
高二物理下學期期末知識點相關文章: