七年級數(shù)學(xué)知識點(diǎn)總結(jié)
高效的學(xué)習(xí),要學(xué)會給自己定定目標(biāo),這樣學(xué)習(xí)會有一個(gè)方向;然后要學(xué)會梳理自身學(xué)習(xí)情況,以課本為基礎(chǔ),結(jié)合自己做的筆記、試卷、掌握的薄弱環(huán)節(jié)、存在的問題等,合理的分配時(shí)間,有針對性、具體的去一點(diǎn)一點(diǎn)的攻克、落實(shí)。本篇文章是小編為您整理的《七年級數(shù)學(xué)知識點(diǎn)總結(jié)歸納》,供大家借鑒。
↓↓↓點(diǎn)擊獲取“七年級知識點(diǎn)”↓↓↓
★七年級下數(shù)學(xué)知識點(diǎn)總結(jié)★
七年級數(shù)學(xué)知識點(diǎn)總結(jié)1
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對值可表示為:
絕對值的問題經(jīng)常分類討論;
(3)a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
七年級數(shù)學(xué)知識點(diǎn)總結(jié)2
二元一次方程組
1.二元一次方程:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個(gè)解.
2.二元一次方程組:兩個(gè)二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個(gè)方程,左右兩邊都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關(guān)鍵.
※5.一次方程組的應(yīng)用:
(1)對于一個(gè)應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個(gè)數(shù)與未知數(shù)個(gè)數(shù)相等時(shí),一般可求出未知數(shù)的值;
(3)對于方程組,若方程個(gè)數(shù)比未知數(shù)個(gè)數(shù)少一個(gè)時(shí),一般求不出未知數(shù)的值,但總可以求出任何兩個(gè)未知數(shù)的關(guān)系.
一元一次不等式(組)
1.不等式:用不等號,把兩個(gè)代數(shù)式連接起來的式子叫不等式.
2.不等式的基本性質(zhì):
不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號的方向不變;
不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號的方向不變;
不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個(gè)不等式的解;不等式所有解的集合,叫做這個(gè)不等式的解集.
4.一元一次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時(shí),要注意空圈和實(shí)點(diǎn).
七年級數(shù)學(xué)知識點(diǎn)總結(jié)3
整式的加減
一、代數(shù)式
1、用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
2、用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式里的運(yùn)算關(guān)系計(jì)算得出的結(jié)果,叫做代數(shù)式的值。
二、整式
1、單項(xiàng)式:
(1)由數(shù)和字母的乘積組成的代數(shù)式叫做單項(xiàng)式。
(2)單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。
(3)一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
2、多項(xiàng)式
(1)幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
(2)每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。
(3)不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
3、升冪排列與降冪排列
(1)把多項(xiàng)式按x的指數(shù)從大到小的順序排列,叫做降冪排列。
(2)把多項(xiàng)式按x的指數(shù)從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據(jù)是:去括號法則,合并同類項(xiàng)法則,以及乘法分配率。
去括號法則:如果括號前是“十”號,把括號和它前面的“+”號去掉,括號里各項(xiàng)都不變符號;如果括號前是“一”號,把括號和它前面的“一”號去掉,括號里各項(xiàng)都改變符號。
2、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。
合并同類項(xiàng):
(1)合并同類項(xiàng)的概念:把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)叫做合并同類項(xiàng)。
(2)合并同類項(xiàng)的法則:同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
(3)合并同類項(xiàng)步驟:
a.準(zhǔn)確的找出同類項(xiàng)。
b.逆用分配律,把同類項(xiàng)的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。
c.寫出合并后的結(jié)果。
(4)在掌握合并同類項(xiàng)時(shí)注意:
a.如果兩個(gè)同類項(xiàng)的系數(shù)互為相反數(shù),合并同類項(xiàng)后,結(jié)果為0.
b.不要漏掉不能合并的項(xiàng)。
c.只要不再有同類項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。
說明:合并同類項(xiàng)的關(guān)鍵是正確判斷同類項(xiàng)。
3、幾個(gè)整式相加減的一般步驟:
(1)列出代數(shù)式:用括號把每個(gè)整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項(xiàng)。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡
(2)代入計(jì)算
(3)對于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。
圖形的初步認(rèn)識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_,就可以展開成平面圖形。
二、點(diǎn)和線
1、經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線。
2、兩點(diǎn)之間線段最短。
3、點(diǎn)C線段AB分成相等的兩條線段AM與MB,點(diǎn)M叫做線段AB的中點(diǎn)。類似的還有線段的三等分點(diǎn)、四等分點(diǎn)等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點(diǎn)的射線組成的圖形。
2、繞著端點(diǎn)旋轉(zhuǎn)到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點(diǎn)旋轉(zhuǎn)到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個(gè)周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線,叫做這個(gè)角的平分線。類似的,還有叫的三等分線。
五、余角和補(bǔ)角
1、如果兩個(gè)角的和等于90(直角),就說這兩個(gè)角互為余角。
2、如果兩個(gè)角的和等于180(平角),就說這兩個(gè)角互為補(bǔ)角。
3、等角的補(bǔ)角相等。
4、等角的余角相等。
六、相交線
1、定義:兩條直線相交,所成的四個(gè)角中有一個(gè)角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關(guān)系的兩條直線所成的4個(gè)角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數(shù)條。
4、過一點(diǎn)有且只有一條直線與已知直線垂直。
5、連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離。
7、有一個(gè)公共的頂點(diǎn),有一條公共的邊,另外一邊互為反向延長線,這樣的兩個(gè)角叫做鄰補(bǔ)角。
兩條直線相交有4對鄰補(bǔ)角。
8、有公共的頂點(diǎn),角的兩邊互為反向延長線,這樣的兩個(gè)角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內(nèi),兩條直線沒有交點(diǎn),則這兩條直線互相平行,記作:a∥b。
2、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
4、判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行。簡單說成:內(nèi)錯(cuò)角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行。簡單說成:同旁內(nèi)角互補(bǔ),兩直線平行。
5、平行線的性質(zhì)
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。簡單說成:兩直線平行,內(nèi)錯(cuò)角相等。
(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡單說成:兩直線平行,同旁內(nèi)角互補(bǔ)。
七年級數(shù)學(xué)知識點(diǎn)總結(jié)相關(guān)文章:
★ 七年級數(shù)學(xué)知識點(diǎn)整理大全
★ 2017年中考初中數(shù)學(xué)知識點(diǎn)總結(jié)
★ 初中部數(shù)學(xué)學(xué)習(xí)方法總結(jié)
★ 初中數(shù)學(xué)分式知識點(diǎn)總結(jié)
★ 初一數(shù)學(xué)基礎(chǔ)知識點(diǎn)梳理