初中數(shù)學(xué)學(xué)習(xí)方法和知識(shí)點(diǎn)總結(jié)
上了中學(xué)之后,數(shù)學(xué)學(xué)不會(huì),學(xué)不懂,但又必須學(xué)好它,怎么辦?下面小編為大家?guī)?lái)初中數(shù)學(xué)的學(xué)習(xí)方法。
初中數(shù)學(xué)七點(diǎn)學(xué)習(xí)法
一、課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。
數(shù)學(xué)新知識(shí)的學(xué)習(xí),數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行。所以要特別重視課內(nèi)的學(xué)習(xí)效率,不干有一絲馬虎,一定要形成正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極拓展自己的思維,比較自己的解題思路與老師講的有那些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,多想幾個(gè)為什么?應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,一定要讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決,理清思路。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系,形成自己的學(xué)習(xí)體系。
二、適當(dāng)多做題,并養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題,是學(xué)好數(shù)學(xué)的必有之路,熟悉掌握各種題型的解題思路。剛開(kāi)始要以基礎(chǔ)題目入手,以課上的題目為準(zhǔn),提高自己的分析能力。掌握一般的解題思路。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路、正確的解題過(guò)程,兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵的時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)解題無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
三、調(diào)整心態(tài)、正確對(duì)待考試。
首先,把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上學(xué)習(xí)。因?yàn)槊看慰荚囌冀^大部分的是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納,調(diào)整好自己的心態(tài),使自己在任何時(shí)候都保持鎮(zhèn)靜,思路有條不紊,克服浮躁情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能把我打垮的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題,要有十二分的把握拿滿分;對(duì)于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的水平正常甚至超常發(fā)揮。
學(xué)生獲得知識(shí)和能力是在學(xué)習(xí)行為過(guò)程中實(shí)現(xiàn)的,一定的學(xué)習(xí)行為,重復(fù)多次就會(huì)形成一定的學(xué)習(xí)習(xí)慣,養(yǎng)成好的習(xí)慣會(huì)使人終生受益。特別對(duì)于數(shù)學(xué)學(xué)科,不良習(xí)慣會(huì)嚴(yán)重影響學(xué)生的數(shù)學(xué)學(xué)習(xí),阻礙學(xué)生數(shù)學(xué)素質(zhì)的全面提高。因此,只要學(xué)生想學(xué)是不夠的,還必須“會(huì)學(xué)”.要講究學(xué)習(xí)方法,提高學(xué)習(xí)效率,變被動(dòng)為主動(dòng)。在教學(xué)中,應(yīng)重視加強(qiáng)數(shù)學(xué)學(xué)法指導(dǎo),我主要采取以下做法,供同行們參考:
四、預(yù)習(xí)方法的指導(dǎo)。
預(yù)習(xí)是學(xué)生自己摸索、自己動(dòng)手、動(dòng)腦、自己閱讀課文的過(guò)程,可以培養(yǎng)學(xué)生的閱讀和自學(xué)能力,自我運(yùn)用能力。課前要布置預(yù)習(xí)提綱,自己在課本上把關(guān)鍵句、重點(diǎn)詞、概念、公式、定理劃出來(lái),養(yǎng)成邊讀邊劃邊批邊算的習(xí)慣。所要達(dá)到的要求:課本上的例題課前會(huì)做。
五、聽(tīng)課方法的指導(dǎo)。
聽(tīng)課要做到“一專(zhuān)三動(dòng)”,即專(zhuān)心聽(tīng)老師對(duì)重點(diǎn)難點(diǎn)的剖析,聽(tīng)解法及思路分析、技巧等,在聽(tīng)課過(guò)程中特別對(duì)預(yù)習(xí)中的例題的不明之處提出自己的疑問(wèn);其次在聽(tīng)課時(shí)還要勤于思考,積極舉手發(fā)言,敢于發(fā)表自己的見(jiàn)解。認(rèn)真做好堂上練習(xí),認(rèn)真聽(tīng)老師講評(píng)及課后小結(jié),積極動(dòng)腦、動(dòng)手、動(dòng)口參與教學(xué)活動(dòng)。
六、錯(cuò)題方面的指導(dǎo)。
在平時(shí)的課堂作業(yè)過(guò)程中,自己做題時(shí)難免出現(xiàn)這樣那樣的錯(cuò)誤,我們自己準(zhǔn)備好一本筆記本,把作業(yè)本上的錯(cuò)題訂正在筆記本上,并要求分析錯(cuò)題的原因,解決的策略及從錯(cuò)題中得到的收獲都一一記錄下來(lái),整理成一本錯(cuò)題集。
七、總結(jié)歸納復(fù)習(xí)方法的指導(dǎo)。
在進(jìn)行單元小結(jié)或?qū)W期總結(jié)復(fù)習(xí)時(shí),自己對(duì)所學(xué)過(guò)的每個(gè)知識(shí)點(diǎn)、每章節(jié)的內(nèi)容加以綜合歸納,注意知識(shí)的新舊聯(lián)系、知識(shí)的前后聯(lián)系、知識(shí)的橫向聯(lián)系,寫(xiě)出簡(jiǎn)明小結(jié),使知識(shí)系統(tǒng)化、條理化、專(zhuān)題化。有選擇性地解一些各種類(lèi)型和檔次的習(xí)題,使學(xué)生掌握各類(lèi)題的解題規(guī)律和方法,鞏固所學(xué)內(nèi)容。特別提醒學(xué)生錯(cuò)題集的整理。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及解法
基本知識(shí)
數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)
有理數(shù):
①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
?、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
?、佼?huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。
?、谌魏我粋€(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
?、廴绻麅蓚€(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
?、軘?shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:
①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
?、谡龜?shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:
加法:
?、偻?hào)相加,取相同的符號(hào),把絕對(duì)值相加。
②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
?、垡粋€(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:
?、賰蓴?shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
②任何數(shù)與0相乘得0。
?、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:
?、俪砸粋€(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
②0不能作除數(shù)。
乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)
平方根:
①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
?、谌绻粋€(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。
?、垡粋€(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。
?、芮笠粋€(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。
立方根:
①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
?、矍笠粋€(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。
實(shí)數(shù):
?、賹?shí)數(shù)分有理數(shù)和無(wú)理數(shù)。
?、谠趯?shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類(lèi)項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類(lèi)項(xiàng)。②把同類(lèi)項(xiàng)合并成一項(xiàng)就叫做合并同類(lèi)項(xiàng)。③在合并同類(lèi)項(xiàng)時(shí),我們把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
?、贁?shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)整式。
?、谝粋€(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類(lèi)項(xiàng)。
冪的運(yùn)算:
① 同底數(shù)冪相乘:a^m·a^n=a^(m+n)
?、?冪的乘方:(a^m)n=a^mn
?、?積的乘方:(ab)^m=a^m·b^m
?、?同底數(shù)冪相除:a^m÷a^n=a^(m-n) (a≠0)
這些公式也可以這樣用:⑤a^(m+n)= a^m·a^n
⑥a^mn=(a^m)·n
?、遖^m·b^m=(ab)^m
⑧ a^(m-n)= a^m÷a^n (a≠0)
整式的乘法:
?、賳雾?xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
?、鄱囗?xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
?、賳雾?xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
?、诙囗?xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:
①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
?、俜帜钢泻形粗獢?shù)的方程叫分式方程。
?、谑狗匠痰姆帜笧?的解稱(chēng)為原方程的增根。
方程與不等式
1、方程與方程組
一元一次方程:
?、僭谝粋€(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
?、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程
1、一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)它也有很深的了解,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了。
2、一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(,),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦?,在用直接開(kāi)平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解。
(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3、解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式。
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c。
4、韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=,二根之積=
也可以表示為x1+x2=,x1x2=。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。
5、一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)。
2、不等式與不等式組
不等式:
①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。
?、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋€(gè)正數(shù),不等號(hào)方向不變。
④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
不等式的解集:
?、倌苁共坏仁匠闪⒌奈粗獢?shù)的值,叫做不等式的解。
?、谝粋€(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
?、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
?、訇P(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
?、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
③求不等式組解集的過(guò)程,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。
在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C
如果不等式乘以0,那么不等號(hào)改為等號(hào)
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):
①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱(chēng)Y是X的一次函數(shù)。
?、诋?dāng)B=0時(shí),稱(chēng)Y是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
空間與圖形
圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:
①圖形是由點(diǎn),線,面構(gòu)成的。
②面與面相交得線,線與線相交得點(diǎn)。
③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。
?、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
?、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個(gè)扇形。
角
線:
?、倬€段有兩個(gè)端點(diǎn)。
?、趯⒕€段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
?、蹖⒕€段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。
④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:
?、賰牲c(diǎn)之間的所有連線中,線段最短。
?、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
?、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
?、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。
?、蹚囊粋€(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:
?、偻黄矫鎯?nèi),不相交的兩條直線叫做平行線。
?、诮?jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。
?、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點(diǎn)叫做垂足。
③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱(chēng)軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:
1、對(duì)角線相等的菱形
2、鄰邊相等的矩形
基本方法
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,以及解一些有關(guān)二次曲線的問(wèn)題等
5、待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒(méi)有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯一、至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:
(1)平移;
(2)旋轉(zhuǎn);
(3)對(duì)稱(chēng)。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過(guò)驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱(chēng)為驗(yàn)證法(也稱(chēng)代入法)。當(dāng)遇到定量命題時(shí),常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過(guò)對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。