學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 小學(xué)學(xué)習(xí)方法 > 六年級方法 > 六年級數(shù)學(xué) > 小升初奧數(shù)知識點(diǎn):完全平方數(shù)及余數(shù)同余與周期

小升初奧數(shù)知識點(diǎn):完全平方數(shù)及余數(shù)同余與周期

時(shí)間: 惠敏1218 分享

小升初奧數(shù)知識點(diǎn):完全平方數(shù)及余數(shù)同余與周期

  小升初是孩子最重要的起步方向,我們需要關(guān)注怎樣的信息才能對孩子的未來有幫助呢?學(xué)習(xí)啦網(wǎng)小編告訴大家!

  小升初奧數(shù)知識點(diǎn):余數(shù)、同余與周期

  一、同余的定義:

 ?、偃魞蓚€(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。

 ?、谝阎齻€(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(mod m),讀作a同余于b模m。

  二、同余的性質(zhì):

  二、同余的性質(zhì):

 ?、僮陨硇裕篴≡a(mod m);

 ?、趯ΨQ性:若a≡b(mod m),則b≡a(mod m);

 ?、蹅鬟f性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);

  ④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);

  ⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);

 ?、蕹朔叫裕喝鬭≡b(mod m),則an≡bn(mod m);

 ?、咄缎?若a≡ b(mod m),整數(shù)c,則a×c≡ b×c(mod m×c);

  三、關(guān)于乘方的預(yù)備知識:

  ①若A=a×b,則MA=Ma×b=(Ma)b

 ?、谌鬊=c+d則MB=Mc+d=Mc×Md

  四、被3、9、11除后的余數(shù)特征

 ?、僖粋€(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則M≡n(mod 9)或(mod 3);

  ②一個(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);

  五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(mod p)。

  余數(shù)及其應(yīng)用

  基本概念:對任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0

  余數(shù)的性質(zhì):

 ?、儆鄶?shù)小于除數(shù)。

 ?、谌鬭、b除以c的余數(shù)相同,則c|a-b或c|b-a。

 ?、踑與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。

 ?、躠與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。

  小升初奧數(shù)知識點(diǎn):完全平方數(shù)

  完全平方數(shù)特征:

  1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。

  2. 除以3余0或余1;反之不成立。

  3. 除以4余0或余1;反之不成立。

  4. 約數(shù)個(gè)數(shù)為奇數(shù);反之成立。

  5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。

  6. 奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。

  7. 兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。

  平方差公式:X2-Y2=(X-Y)(X+Y)

  完全平方和公式:(X+Y)2=X2+2XY+Y2

  完全平方差公式:(X-Y)2=X2-2XY+Y2

4516175