高一數(shù)學集合的基本運算的知識點分析
集合的基本運算,是學生在高一學習的內(nèi)容,關于這方面的知識點學生需要掌握,下面學習啦的小編將為大家?guī)砀咭粩?shù)學關于集合的基本運算知識點介紹,希望能夠幫助到大家。
高一數(shù)學集合的基本運算的知識點
(1)A={1,3,5},B={1,2,3,4},C={1,2,3,4,5}
(2)A={x|0
思考:上述兩組集合中,集合A、B與集合C的關系如何?
由所有屬于集合A或?qū)儆诩螧的元素組成的集合,稱為集合A與B的并集。
思考:我們用符號“A∪B”表示集合A與B的并集,并讀作“A并B”,那么如何用描述法表示集合A∪B?
思考:如何用venn圖表示A∪B?
思考:集合A、B與集合A∪B的關系如何?A∪B與B∪A的關系如何?
思考:集合A∪A,A∪分別等于什么?
思考:若AB,則A∪B等于什么?反之成立嗎?
思考:如A∪B=,則說明什么?
并集例題:
例1:設A={4,5,6,8},B={3,5,7,8},求A∪B。
例2:設集合A={x|-1
知識探究(二)
考察下列兩組集合:
(1)A={1,3,5},B={1,2,3,4},C={1,3}
(2)A={x|0
思考:上述兩組集合中,集合A、B與集合C的關系如何?
由屬于集合A且屬于集合B的所有元素組成的集合,稱為集合A與B的交集。
我們用符號“A∩B”表示集合A與B的交集,并讀作“A交B”,那么如何用描述法表示集合A∩B?
思考:如何用venn圖表示A∩B?
思考:集合A、B與集合A∩B的關系如何?A∩B與B∩A的關系如何?
思考:集合A∩A,A∩分別等于什么?
思考:若AB,則A∩B等于什么?反之成立嗎?
思考:如A∩B=,則說明什么?
交集例題:
例3:A={x|x是新華中學高一年級參加百米賽跑的同學},B={x|x是新華中學高一年級參加跳高比賽的同學}。求A∪B。
例4:設平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系。
知識探究(三)
思考:方程(x-2)(x2-3)=0在有理數(shù)范圍內(nèi)的解是什么?在實數(shù)范圍內(nèi)的解是什么?
思考:不等式0
由此看來:在不同范圍內(nèi)研究同一個問題,可能有不同的結果,我們通常把研究問題前給定的范圍所對應的集合稱為全集,如Q,R,Z等,那么全集的含義如何呢?
如果一個集合含有所研究問題中涉及的所有元素,則稱這個集合為全集,通常記作U。
知識探究(四)
考察下列各組集合:
(1)U={1,2,3,4,…,10},A={1,3,5,7,9},B={2,4,6,8,10}
(2)U={x|x是市一高一年級2班的同學},A={x|x是市一高一年級2班的男同學},U={x|x是市一高一年級2班的女同學}
(3)U={x|0
思考:在上述各組集合中,把集合U看成全集,我們稱集合B為集合A相對于全集U的補集。一般地,集合A相對于全集U的補集是由哪些元素組成的?
由全集U中不屬于集合A的所有元素組成的。
對于一個集合A,由全集U中不屬于集合A的所有元素組成的集合,稱為集合A相對于全集U的補集,記作CUA。
思考:如何用描述法表示集合A相對于全集U的補集?如何用veuu圖表示CUA?
思考:集合CU,CUU,A∩CUA,A∪CUA,分別等于什么?
思考:若CUA=B,則CUB等于什么?若AB,則CUA與CUB的關系如何?
補集例題:
例5:設全集U={x∈N*|x<9},A={1,2,3,4},B={3,4,5,6,7},求CU(A∩B),(CUA)∪B。
例6:已知全集U=R,集合A={x||x-1|>2},B={x|2
例7:設全集U={x|x是三角形},A={x|x是銳角三角形},B={x|x是鈍角三角形}。
求A∩B,CU(A∪B)。
高一數(shù)學必修一集合試題
一、基礎過關
1.設P={x|x<4},Q={x|x2<4},則()
A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP
2.符合條件{a}?P⊆{a,b,c}的集合P的個數(shù)是()
A.2B.3
C.4D.5
3.已知集合A,B均為集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁UA)∩B={5},則集合B等于()
A.{1,3}B.{3,5}
C.{1,5}D.{1,3,5}
4.設M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},則下列關系正確的是()
A.M=P
B.M?P
C.P?M
D.M與P沒有公共元素
5.全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},則∁U(M∪N)等于()
A.{1,3,5}B.{2,4,6}
C.{1,5}D.{1,6}
6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范圍是________.
7.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求A∩B;
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
8.設A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A∪B={3,5},A∩B={3},求實數(shù)a,b,c的值.
二、能力提升
9.已知集合A={x|x<3或x≥7},B={x|x
A.a>3B.a≥3C.a≥7D.a>7
10.集合A={1,2,3,5},當x∈A時,若x-1A,x+1A,則稱x為A的一個“孤立元素”,則A中孤立元素的個數(shù)為____.
11.設U=R,M={x|x≥1},N={x|0≤x<5},則(∁UM)∪(∁UN)=________.
12.某班50名同學參加一次智力競猜活動,對其中A,B,C三道知識題作答情況如下:答錯A者17人,答錯B者15人,答錯C者11人,答錯A,B者5人,答錯A,C者3人,答錯B,C者4人,A,B,C都答錯的有1人,問A,B,C都答對的有多少人?
三、探究與拓展
13.已知集合A={x|1
(1)試定義一種新的集合運算Δ,使AΔB={x|1
(2)按(1)的運算,求BΔA.
高一數(shù)學必修一集合試題(2)
一、填空題
1.下列語句能確定是一個集合的是________.(填序號)
①著名的科學家;
?、诹糸L發(fā)的女生;
③2010年廣州亞運會比賽項目;
?、芤暳Σ畹哪猩?
2.集合A只含有元素a,則下列各式正確的是________.(填序號)
①0∈A;②a∉A;③a∈A;④a=A.
3.已知M中有三個元素可以作為某一個三角形的邊長,則此三角形一定不是________.(填序號)
①直角三角形;②銳角三角形;③鈍角三角形;④等腰三角形.
4.由a2,2-a,4組成一個集合A,A中含有3個元素,則實數(shù)a的取值可以是________.(填序號)
①1;②-2;③6;④2.
5.已知集合A是由0,m,m2-3m+2三個元素組成的集合,且2∈A,則實數(shù)m的值為________.
6.由實數(shù)x、-x、|x|、x2及-3x3所組成的集合,最多含有________個元素.
7.由下列對象組成的集體屬于集合的是________.(填序號)
?、俨怀^π的正整數(shù);
?、诒景嘀谐煽兒玫耐瑢W;
?、鄹咭粩?shù)學課本中所有的簡單題;
?、芷椒胶蟮扔谧陨淼臄?shù).
8.集合A中含有三個元素0,1,x,且x2∈A,則實數(shù)x的值為________.
9.用符號“∈”或“∉”填空
-2______R,-3______Q,-1_______N,π______Z.
二、解答題
10.判斷下列說法是否正確?并說明理由.
(1)參加2010年廣州亞運會的所有國家構成一個集合;
(2)未來世界的高科技產(chǎn)品構成一個集合;
(3)1,0.5,32,12組成的集合含有四個元素;
(4)高一(三)班個子高的同學構成一個集合.
11.已知集合A是由a-2,2a2+5a,12三個元素組成的,且-3∈A,求a.
能力提升
12.設P、Q為兩個非空實數(shù)集合,P中含有0,2,5三個元素,Q中含有1,2,6三個元素,定義集合P+Q中的元素是a+b,其中a∈P,b∈Q,則P+Q中元素的個數(shù)是多少?
13.設A為實數(shù)集,且滿足條件:若a∈A,則11-a∈A(a≠1).
求證:(1)若2∈A,則A中必還有另外兩個元素;
(2)集合A不可能是單元素集.
猜你感興趣: