高中數(shù)學(xué)的易錯(cuò)的考點(diǎn)具體分析
在數(shù)學(xué)的學(xué)習(xí)中,有一些的考點(diǎn)是學(xué)生經(jīng)常做錯(cuò)的,下面是學(xué)習(xí)啦小編給大家?guī)淼挠嘘P(guān)于高中數(shù)學(xué)的易錯(cuò)的考點(diǎn)的、介紹,希望能夠幫助到大家。
高中數(shù)學(xué)的易錯(cuò)的考點(diǎn)分析
一、對(duì)導(dǎo)數(shù)基本概念的理解。
導(dǎo)數(shù)的本質(zhì)是"平均變化率的極限",也就是
,而這里
的形式并不重要,只要是是"相同區(qū)間"上的"函數(shù)值之差"比上"自變量"之差,就是導(dǎo)數(shù)。如果能理解清楚這一點(diǎn),再看題目常出的
、
之類的形式,就感覺比較清晰了。
二、復(fù)合函數(shù)求導(dǎo)計(jì)算錯(cuò)誤。
對(duì)于復(fù)合函數(shù)求導(dǎo)的規(guī)則,同學(xué)大多掌握的不錯(cuò),但題目中真正出現(xiàn)復(fù)合函數(shù)的時(shí)候,計(jì)算還是會(huì)出問題。問題出在哪,不在于不會(huì)算,而是沒有發(fā)現(xiàn)這是復(fù)合函數(shù)。
課標(biāo)要求學(xué)生掌握形如f(ax+b)的復(fù)合函數(shù)求導(dǎo)規(guī)則,這一點(diǎn)已經(jīng)限制的很死板了。所以當(dāng)題目中的函數(shù)比較符合這個(gè)形式的時(shí)候,同學(xué)大多也是認(rèn)的出來的,比如
這樣的函數(shù)。反而是內(nèi)層函數(shù)更簡單的時(shí)候,會(huì)被學(xué)生忽略,例如
這樣的函數(shù)。所以同學(xué)在求導(dǎo)的時(shí)候,一定要刻意觀察這一點(diǎn),識(shí)別隱蔽在這里的陷阱。
三、導(dǎo)數(shù)與單調(diào)區(qū)間的關(guān)系。
利用導(dǎo)數(shù)求函數(shù)的的單調(diào)區(qū)間是導(dǎo)數(shù)應(yīng)用中最基本的題型,按說本不是什么難點(diǎn)。但是這里有一個(gè)最大的麻煩,就是導(dǎo)數(shù)
與函數(shù)的單調(diào)性不是充要條件。因此,什么時(shí)候?qū)?/p>
,又在什么時(shí)候應(yīng)該寫
是很多同學(xué)犯迷糊的地方。
這里需要注意一個(gè)要點(diǎn),我們每一步運(yùn)算或者推導(dǎo),得到的條件其實(shí)都是原條件的必要非充分條件,想清楚這一點(diǎn),面對(duì)這個(gè)問題就清晰了。
如果原題讓我們"求"函數(shù)的增區(qū)間,我們就用增區(qū)間的充分非必要條件,也就是
來求范圍;如果原題給了我們函數(shù)增區(qū)間的性質(zhì),我們就利用增區(qū)間的必要非充分條件,也就是
來解題。
四、含參導(dǎo)數(shù)問題。
導(dǎo)數(shù)這部分的大題,簡單題通常很常規(guī),給一個(gè)不含參的函數(shù),求單調(diào)區(qū)間和極值,也可能再利用極值分析一下函數(shù)根的分布。而比較難的大題,往往是考察含參函數(shù)的性質(zhì)。
含參的導(dǎo)數(shù)問題,又有兩種典型的考法。
一種是考察函數(shù)的單調(diào)區(qū)間,近兩年北京高考題的導(dǎo)數(shù)大題就是這么考察的??疾斓闹攸c(diǎn)在于對(duì)參數(shù)進(jìn)行分類討論。這時(shí)候往往先考慮現(xiàn)有條件對(duì)參數(shù)有沒有限制,如果有限制,一定要在限制范圍內(nèi)分類討論。
另一種是給定函數(shù)在某區(qū)間的單調(diào)性,求參數(shù)的取值范圍。這種含參不等式的問題,往往可以通過分離變量或類似的方法,轉(zhuǎn)化為不等式的恒成立問題。而"恒成立"的含義,一定是比"比最大的還大"或"比最小的還小"。因此恒成立問題往往又可以轉(zhuǎn)化為求函數(shù)最值的問題。而給定函數(shù)求最值,又是同學(xué)學(xué)習(xí)導(dǎo)數(shù)應(yīng)用的基本功。所以,這類題目,只要思路清晰,往往也并不難處理。
導(dǎo)數(shù)這部分知識(shí)雖然學(xué)生以前并不熟悉,又比較抽象。但是整體而言,期中考試的考察不會(huì)太難,題目的結(jié)構(gòu)和形式往往同學(xué)在是日常練習(xí)中所熟悉的。因此,把常見的易錯(cuò)點(diǎn)進(jìn)行梳理和分析,考試時(shí)做到心中有數(shù),就能讓自己的成績有所突破。
高中數(shù)學(xué)的知識(shí)點(diǎn)記憶的方法
有理數(shù)的加法運(yùn)算:同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好?!咀ⅰ?ldquo;大”減“小”是指絕對(duì)值的大小。
合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號(hào)法則:去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
恒等變換:兩個(gè)數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號(hào)偶不變。(a-b)2n1=-(b-a)2n1(a-b)2n=(b-a)2n
平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級(jí)向下變括弧(小—中—大)
單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開)方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對(duì)值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;(,),(-,),(-,-)和(,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。
象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。
對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫成y=k(x0)b、二次函數(shù)的解析式寫成y=a(xh)2k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。
一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對(duì)魚磷(余鄰)直刀切。正:正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數(shù)的增減性:正增余減。
特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)
平行四邊形的判定:要證平行四邊形,兩個(gè)條件才能行,一證對(duì)邊都相等,或證對(duì)邊都平行,一組對(duì)邊也可以,必須相等且平行。對(duì)角線,是個(gè)寶,互相平分“跑不了”,對(duì)角相等也有用,“兩組對(duì)角”才能成。
梯形問題的輔助線:移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對(duì)角互補(bǔ)記心間,外角等于內(nèi)對(duì)角,四邊形定內(nèi)接圓;直角相對(duì)或共弦,試試加個(gè)輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點(diǎn),證垂直來半徑連,直線與圓未給點(diǎn),需證半徑作垂線;四邊形有內(nèi)切圓,對(duì)邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
猜你感興趣: