高二數(shù)學導數(shù)應用考察內(nèi)容歸納
高二數(shù)學導數(shù)應用考察內(nèi)容歸納
導數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具,下面是學習啦小編給大家?guī)淼母叨?shù)學導數(shù)應用考察內(nèi)容歸納,希望對你有幫助。
高二數(shù)學導數(shù)應用考察內(nèi)容
1.導數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細微);
(2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關于 次多項式的導數(shù)問題屬于較難類型。
2.關于函數(shù)特征,最值問題較多,所以有必要專項討論,導數(shù)法求最值要比初等方法快捷簡便。
3.導數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。
高二數(shù)學導數(shù)應用知識整合
1.導數(shù)概念的理解。
2.利用導數(shù)判別可導函數(shù)的極值的方法及求一些實際問題的最大值與最小值。
復合函數(shù)的求導法則是微積分中的重點與難點內(nèi)容。課本中先通過實例,引出復合函數(shù)的求導法則,接下來對法則進行了證明。
3.要能正確求導,必須做到以下兩點:
(1)熟練掌握各基本初等函數(shù)的求導公式以及和、差、積、商的求導法則,復合函數(shù)的求導法則。
(2)對于一個復合函數(shù),一定要理清中間的復合關系,弄清各分解函數(shù)中應對哪個變量求導。
高二數(shù)學學習方法
課內(nèi)重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網(wǎng)絡,納入自己的知識體系。
適當多做題,養(yǎng)成良好的解題習慣。
要想學好數(shù)學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
調(diào)整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
看了“高二數(shù)學導數(shù)應用考察內(nèi)容歸納”的人還看了: