學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級(jí)數(shù)學(xué)>

初二數(shù)學(xué)輔導(dǎo)資料:因式分解

時(shí)間: 淑航658 分享

  學(xué)習(xí)數(shù)學(xué)我們要有多一份的信心和耐心。下面是學(xué)習(xí)啦小編收集整理的初二數(shù)學(xué)《因式分解》的輔導(dǎo)資料以供大家學(xué)習(xí)。

  初二數(shù)學(xué)輔導(dǎo)資料:因式分解

  1、因式分解的定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,像這樣的式子的變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式。

  2、 分解因式與整式乘法的關(guān)系:(a+b)(a-b)=a-b是兩種互逆變形

  注意:只有多項(xiàng)式才能進(jìn)行因式分解,分解因式必須分解到不能分解為止。

  知識(shí)點(diǎn)二 :因式分解的方法

  1、提取公因式法:如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,那么可以把這個(gè)公因式提出來,將多項(xiàng)式寫成公因式與另一個(gè)因式乘積的形式。

  練習(xí): 22

  a2-2a= -10x2y-5xy2+15xy=

  9x2-6xy+3xz= 2x(x-y)-(y-x)2=

  2,公式法:平方差和完全平方公式。完全平方公式的特征,左邊的多項(xiàng)式有三項(xiàng),有兩項(xiàng)同號(hào)且分別能寫成某數(shù)或者某式的平方,第三項(xiàng)是這兩個(gè)數(shù)或者是積的兩倍,符號(hào)可以是正也可以是負(fù)。

  練習(xí):

  -m2+n2= a2-14a+49=

  1a2-6a+9= -m2-m-4 =

  a2-4b2= a2+2a(b+c)+(b+c)2=

  (a+b)2-1= (m+n)2-6(m+n)+9=

  16x2y2z2-9= -3ax2+6axy-3ay2=

  初二數(shù)學(xué)輔導(dǎo)資料:整式的乘法

  1、整式與分式:

  (1)了解整數(shù)指數(shù)冪的意義和基本性質(zhì);會(huì)用科學(xué)記數(shù)法表示數(shù)(包括在計(jì)算器上表示)。

  (2)能進(jìn)行簡單的整式乘法運(yùn)算(其中多項(xiàng)式相乘僅指一次式之間以及一次式與二次式相乘)。

  (3)能推導(dǎo)乘法公式:(a+b)( a- b) = a2- b2; (a±b)2 = a 2±2ab + b 2,了解公式的幾何背景,并能利用公式進(jìn)行簡單計(jì)算。

  (4)能用提公因式法、公式法(直接利用公式不超過二次)進(jìn)行因式分解(指數(shù)是正整數(shù))。

  (5)了解分式和最簡分式的概念,能利用分式的基本性質(zhì)進(jìn)行約分和通分;能進(jìn)行簡單的分式加、減、乘、除運(yùn)算。

  2、方程:

  (1)能根據(jù)具體問題中的數(shù)量關(guān)系列出方程,體會(huì)方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的有效模型。

  (2)經(jīng)歷估計(jì)方程解的過程。

  (3)能解可化為一元一次方程的分式方程。

  (4)能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)方程的解是否合理。

  (二)知識(shí)點(diǎn)、考點(diǎn)分析:

  1、冪的運(yùn)算

  (1)同底數(shù)冪的乘法、同底數(shù)冪的除法、積的乘方、分式的乘方、冪的乘方。①法則;②負(fù)指數(shù)次冪、零指數(shù)次冪;③運(yùn)算。

  (2)科學(xué)記數(shù)法:①比較大的數(shù);②比較小的數(shù)

  2、整式的乘除

  (1)單項(xiàng)式乘以單項(xiàng)式、單項(xiàng)式乘以多項(xiàng)式、多項(xiàng)式乘以多項(xiàng)式、單項(xiàng)式除以單項(xiàng)式、多項(xiàng)式除以單項(xiàng)式。①推導(dǎo)過程;②法則;③運(yùn)算。

  (2)乘法公式:(a+b)( a- b) = a2- b2; (a±b)2 = a 2±2ab + b 2。①幾何意義;②公式特點(diǎn);③運(yùn)算;④應(yīng)用。

  3、因式分解

  (1)概念:①形式要求;②因式分解與整式乘法的關(guān)系

  (2)常用的因式分解方法:①提取公因式法:②運(yùn)用公式法: 平方差公式、完全平方公式

  (3)因式分解的一般步驟①一提:如果 多項(xiàng)式即各項(xiàng)有公因式,那么先提公因式;②二用:如果多項(xiàng)沒有公因式,再嘗試運(yùn)用公式法來分解;③三查:分解因式必須進(jìn)行到每一個(gè)因式都解因?yàn)橹埂?/p>

  4、分式:

  (1)概念:①分式與整式的區(qū)別;②有無意義的條件;③分式值為0

  (2)分式的基本性質(zhì):①分式的基本性質(zhì);②分式的符號(hào)法則。

  (3)分式的運(yùn)算:①分式的乘、除法;②分式的加、減法(同分母分式、異分母分式);③分式的乘方;④分式的混合運(yùn)算。

  5、分式方程

  (1)概念:①分式方程;②分式方程與整式方程的區(qū)別與聯(lián)系;③分式方程的解(根);④增根

  (2)解分式方程:①步驟;②注意事項(xiàng)。

  (3)應(yīng)用:①步驟;②注意事項(xiàng)。

307477