學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初二學(xué)習(xí)方法 > 八年級數(shù)學(xué) > 新人教版八年級數(shù)學(xué)上冊知識點

新人教版八年級數(shù)學(xué)上冊知識點

時間: 妙純901 分享

新人教版八年級數(shù)學(xué)上冊知識點

  在初二階段,復(fù)習(xí)時不會的、不懂的題目和八年級數(shù)學(xué)知識點。小編整理了關(guān)于新人教版八年級數(shù)學(xué)上冊知識點,希望對大家有幫助!

  新人教版八年級數(shù)學(xué)上冊知識點(一)

  1 全等三角形的對應(yīng)邊、對應(yīng)角相等 ¬

  2邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 ¬

  3 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等 ¬

  4 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 ¬

  5 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等 ¬

  6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 ¬

  7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬

  8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬

  9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬

  10 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬

  21 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 ¬

  22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬

  23 推論3 等邊三角形的各角都相等,并且每一個角都等于60° ¬

  24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) ¬

  25 推論1 三個角都相等的三角形是等邊三角形 ¬

  26 推論 2 有一個角等于60°的等腰三角形是等邊三角形 ¬

  27 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 ¬

  28 直角三角形斜邊上的中線等于斜邊上的一半 ¬

  29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬

  30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬

  新人教版八年級數(shù)學(xué)上冊知識點(二)

  1 全等三角形的對應(yīng)邊、對應(yīng)角相等 ¬

  2邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 ¬

  3 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等 ¬

  4 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 ¬

  5 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等 ¬

  6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 ¬

  7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬

  8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬

  9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬

  10 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬

  21 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 ¬

  22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬

  23 推論3 等邊三角形的各角都相等,并且每一個角都等于60° ¬

  24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) ¬

  25 推論1 三個角都相等的三角形是等邊三角形 ¬

  26 推論 2 有一個角等于60°的等腰三角形是等邊三角形 ¬

  27 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 ¬

  28 直角三角形斜邊上的中線等于斜邊上的一半 ¬

  29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬

  30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬

  新人教版八年級數(shù)學(xué)上冊知識點(三)

  一次函數(shù)

  (1)正比例函數(shù):一般地,形如y=kx ( k是常數(shù),k‡0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

  (2)正比例函數(shù)圖像特征:一些過原點的直線;

  (3)圖像性質(zhì):

  ①當(dāng)k>0時,函數(shù)y=kx的圖像經(jīng)過第一、三象限,從左向右上升,即隨著x的增大y也增大; ②當(dāng)k<0時,函數(shù)y=kx的圖像經(jīng)過第二、四象限,從左向右下降,即隨著x的增大y反而減小;

  (4)求正比例函數(shù)的解析式:已知一個非原點即可;

  (5)畫正比例函數(shù)圖像:經(jīng)過原點和點(1 , k);(或另外一個非原點)

  (6)一次函數(shù):一般地,形如y=kx+b(k、b是常數(shù),k‡0)的函數(shù),叫做一次函數(shù);

  (7)正比例函數(shù)是一種特殊的一次函數(shù);(因為當(dāng)b=0時,y=kx+b即為y=kx)

  (8)一次函數(shù)圖像特征:一些直線;

  (9)性質(zhì):

  ①y=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當(dāng)b>0, 向上平移;當(dāng)b<0,向下平移)

  ②當(dāng)k>0時,直線y=kx+b由左至右上升,即y隨著x的增大而增大;

 ?、郛?dāng)k<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減小;

 ?、墚?dāng)b>0時,直線y=kx+b與y軸正半軸有交點為(0,b);

 ?、莓?dāng)b<0時,直線y=kx+b與y軸負(fù)半軸有交點為(0,b);

  (10)求一次函數(shù)的解析式:即要求k與b的值;

  (11)畫一次函數(shù)的圖像:已知兩點;

  用函數(shù)觀點看方程(組)與不等式

  (1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=kx+b,確定它與x軸交點的橫坐標(biāo)的值;

  (2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時,求自變量相應(yīng)的取值范圍;

  (3)每個二元一次方程都對應(yīng)一個一元一次函數(shù),于是也對應(yīng)一條直線;

  (4)一般地,每個二元一次方程組都對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線。從“數(shù)”的角度看,解方 程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值;從“形”的角度看,解 方程組相當(dāng)于確定兩條直線交點的坐標(biāo);

新人教版八年級數(shù)學(xué)上冊知識點相關(guān)文章:

1.八年級上冊數(shù)學(xué)復(fù)習(xí)提綱人教版

2.八年級上冊數(shù)學(xué)復(fù)習(xí)知識點

3.八年級上冊數(shù)學(xué)復(fù)習(xí)提綱

4.2016初二上數(shù)學(xué)知識點

5.2016人教版八年級上冊數(shù)學(xué)課本知識

1989864