學習啦 > 學習方法 > 初中學習方法 > 初二學習方法 > 八年級數(shù)學 > 滬科版八年級下冊數(shù)學全教案

滬科版八年級下冊數(shù)學全教案

時間: 妙純901 分享

滬科版八年級下冊數(shù)學全教案

  好的教案還可以給八年級數(shù)學教師帶來更多的反思,更好地促進教師的專業(yè)成長與發(fā)展。下面是小編為大家精心整理的滬科版八年級下冊數(shù)學的教案,僅供參考。

  滬科版八年級下冊數(shù)學教案設計

  《17.1 一元二次方程》

  一、教學目標

  1.掌握一元二次方程的定義,能夠判斷一個方程是否是一元二次方程.

  2.能夠將一元二次方程化為一般形式并確定a,b,c的值.

  二、(重)難點預見

  重點:知道什么叫做一元二次方程,能夠判斷一個方程是否是一元二次方程. 難點:能夠將一元二次方程化為一般形式并確定a,b,c的值.

  三、學法指導

  結合教材和預習學案,先獨立思考,遇到困難小對子之間進行幫扶,完成學習任務.

  四、教學過程

  開場白設計:

  一元二次方程是初中數(shù)學中非常重要的內容,它在實際生活中有著非常廣泛的應用.什么形式的方程是一元二次方程?這樣的方程怎么解答呢?它又能解決哪些問題呢?帶著這些問題,讓我們一起學習《一元二次方程》這一章,今天我們來學習第一節(jié)課,同學們肯定有很多新的收獲.

  1、憶一憶

  在前面我們曾經(jīng)學習了什么叫做一元一次方程?一元指的是什么含義?一次呢?你能猜想什么叫做一元二次方程嗎?

  學法指導:

  本節(jié)課學習一元二次方程先讓學生回憶一元一次方程.學習四邊形可以讓學生回憶三角形,學習四邊形的邊、角、頂點,可以讓學生回憶三角形的邊、角、頂點,則可達到水到渠成的效果.

  2、想一想

  請同學們根據(jù)題意,只列出方程,不進行解答:

  (1)一個矩形的長比寬多2cm,矩形的面積是15cm²,求這個矩形的長和寬.

  (2)兩個連續(xù)正整數(shù)的平方和是313,求這兩個正整數(shù).

  (3)直角三角形三邊的長都是整數(shù),它的斜邊長為13cm,兩條直角邊的差為7cm,求兩條直角邊的長.

  預習困難預見:

  (1)學生在列方程時沒有搞清楚“平方和”與“和的平方”的區(qū)別,以至于把方程列錯了.

  (2)學生在解答第(3)題時,設未知數(shù)時忘記帶單位.

  (3)還有的同學沒有注意只列方程,以至于學生列出方程后嘗試著解方程,導致耽誤了一些時間.

  改進措施:

  教師巡視指導,發(fā)現(xiàn)失誤及時引導;小組內互查,辯論,質疑.

  3、議一議

  請同學們將上面的方程按照以下要求進行整理:

  (1)使方程的右邊為0(2)方程的左邊按x的降冪排列.我們會得到:

 ?、?② ③

  你能發(fā)現(xiàn)上面三個方程有什么共同點?

  _____________________叫做一元二次方程.在定義中著重強調了幾點?哪幾點?如果給你一個方程,讓你判定它是否是一元二次方程,你關鍵看哪幾方面?

  學法指導

  學習一元二次方程的概念,讓同學們剖析定義,總結判定一個方程是否是一元二次方程的方法.

  4、試一試

  下面方程是一元二次方程嗎?為什么?

 ?、賏x-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y²-4y=0

  方法提升:

  由一元二次方程的定義可知,只有同時滿足下列三個條件:①整式方程;②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2,這樣的方程才是一元二次方程,否則缺少其中任何一個條件的方程都不是一元二次方程.

  口訣生成:

  判斷一元二次方程并不難,三個條件要找全:一元,二次,整式判,正確答案就出現(xiàn).

  5、學一學

  一元二次方程都可以化為ax²+bx +c =0(a,b,c為常數(shù),a≠0)的形式,稱為一元二次方程的一般形式,其中ax²,bx,c 分別稱為這個方程的二次項,一次項和常數(shù)項,a,b分別稱為二次項系數(shù),一次項系數(shù).你能指出下列方程的二次項系數(shù),一次項系數(shù),常數(shù)項嗎?請你用a,b,c表示出來.

  八年級數(shù)學復習提綱

  第一章 勾股定理

  1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;即 。

  2.勾股定理的證明:用三個正方形的面積關系進行證明(兩種方法)。

  3.勾股定理逆定理:如果三角形的三邊長 , , 滿足 ,那么這個三角形是直角三角形。滿足 的三個正整數(shù)稱為勾股數(shù)。

  第二章 實數(shù)

  1.平方根和算術平方根的概念及其性質:

  (1)概念:如果 ,那么 是 的平方根,記作: ;其中 叫做 的算術平方根。

  (2)性質:①當 ≥0時, ≥0;當 <0時, 無意義;② = ;③ 。

  2.立方根的概念及其性質:

  (1)概念:若 ,那么 是 的立方根,記作: ;

  (2)性質:① ;② ;③ =

  3.實數(shù)的概念及其分類:

  (1)概念:實數(shù)是有理數(shù)和無理數(shù)的統(tǒng)稱;

  (2)分類:按定義分為有理數(shù)可分為整數(shù)的分數(shù);按性質分為正數(shù)、負數(shù)和零。無理數(shù)就是無限不循環(huán)小數(shù);小數(shù)可分為有限小數(shù)、無限循環(huán)小數(shù)和無限不循環(huán)小數(shù);其中有限小數(shù)和無限循環(huán)小數(shù)稱為分數(shù)。

  4.與實數(shù)有關的概念: 在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義與有理數(shù)范圍內的意義完全一致;在實數(shù)范圍內,有理數(shù)的運算法則和運算律同樣成立。每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都表示一個實數(shù),即實數(shù)和數(shù)軸上的點是一一對應的。因此,數(shù)軸正好可以被實數(shù)填滿。

  5.算術平方根的運算律: ( ≥0, ≥0); ( ≥0, >0)。

  第三章 圖形的平移與旋轉

  1.平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過平移,對應點所連的線段平行且相等;對應線段平行且相等,對應角相等。

  2.旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。這點定點稱為旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形大小和形狀,改變了圖形的位置;經(jīng)過旋轉,圖形點的每一個點都繞旋轉中心沿相同方向轉動了相同和角度;任意一對對應點與旋轉中心的連線所成的角都是旋轉角;對應點到旋轉中心的距離相等。

  3.作平移圖與旋轉圖。


猜你感興趣:

1.滬科版八年級數(shù)學下冊目錄

2.滬科版八年級下冊數(shù)學目錄

3.滬科版八年級數(shù)學教案

4.八年級數(shù)學下冊教學計劃滬科版

5.滬科版八年級下冊數(shù)學教學計劃

1844752