高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例
教案對(duì)于教師在熟悉不過(guò)吧,看一下怎么寫(xiě)吧。在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,就難以避免地要準(zhǔn)備教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。寫(xiě)教案需要注意哪些格式呢?下面是小編精心整理的高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例,希望對(duì)大家有所幫助!
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇1
教學(xué)目標(biāo)
1.掌握平面向量的數(shù)量積及其幾何意義;
2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3.了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問(wèn)題;
4.掌握向量垂直的條件.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)工具
投影儀
教學(xué)過(guò)程
一、復(fù)習(xí)引入:
1.向量共線(xiàn)定理向量與非零向量共線(xiàn)的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ
五,課堂小結(jié)
(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
六、課后作業(yè)
P107習(xí)題2.4A組2、7題
課后小結(jié)
(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
課后習(xí)題
作業(yè)
P107習(xí)題2.4A組2、7題
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇2
一、教學(xué)目標(biāo)
1.把握菱形的判定.
2.通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀(guān)察能力.
3.通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛(ài)好.
4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫(huà)圖向?qū)W生滲透集合思想.
二、教法設(shè)計(jì)
觀(guān)察分析討論相結(jié)合的方法
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):菱形的判定方法.
2.教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具預(yù)備
教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀(guān)察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥
七、教學(xué)步驟
復(fù)習(xí)提問(wèn)
1.敘述菱形的定義與性質(zhì).
2.菱形兩鄰角的比為1:2,較長(zhǎng)對(duì)角線(xiàn)為,則對(duì)角線(xiàn)交點(diǎn)到一邊距離為_(kāi)_______.
引入新課
師問(wèn):要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來(lái)學(xué)習(xí)這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對(duì)角錢(qián)互相垂直的'平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問(wèn):本定理有幾個(gè)條件?
生答:兩個(gè).
師問(wèn):哪兩個(gè)?
生答:(1)是平行四邊形(2)兩條對(duì)角線(xiàn)互相垂直.
師問(wèn):再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學(xué)生口述證實(shí))
證實(shí)時(shí)讓學(xué)生注重線(xiàn)段垂直平分線(xiàn)在這里的應(yīng)用,
師問(wèn):對(duì)角線(xiàn)互相垂直的四邊形是菱形嗎?為什么?
可畫(huà)出圖,顯然對(duì)角線(xiàn),但都不是菱形.
菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書(shū)):
注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒(méi)條件都包含有平行四邊形的判定條件.
例4已知:的對(duì)角錢(qián)的垂直平分線(xiàn)與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結(jié)、擴(kuò)展
1.小結(jié):
(1)歸納判定菱形的四種常用方法.
(2)說(shuō)明矩形、菱形之間的區(qū)別與聯(lián)系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
八、布置作業(yè)
教材P159中9、10、11、13
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇3
教學(xué)目標(biāo):
1、理解并掌握曲線(xiàn)在某一點(diǎn)處的切線(xiàn)的概念;
2、理解并掌握曲線(xiàn)在一點(diǎn)處的切線(xiàn)的斜率的定義以及切線(xiàn)方程的求法;
3、理解切線(xiàn)概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問(wèn)題的能力及數(shù)形結(jié)合思想。
教學(xué)重點(diǎn):
理解并掌握曲線(xiàn)在一點(diǎn)處的切線(xiàn)的斜率的定義以及切線(xiàn)方程的求法。
教學(xué)難點(diǎn):
用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線(xiàn)的斜率。
教學(xué)過(guò)程:
一、問(wèn)題情境
1、問(wèn)題情境。
如何精確地刻畫(huà)曲線(xiàn)上某一點(diǎn)處的變化趨勢(shì)呢?
如果將點(diǎn)P附近的曲線(xiàn)放大,那么就會(huì)發(fā)現(xiàn),曲線(xiàn)在點(diǎn)P附近看上去有點(diǎn)像是直線(xiàn)。
如果將點(diǎn)P附近的曲線(xiàn)再放大,那么就會(huì)發(fā)現(xiàn),曲線(xiàn)在點(diǎn)P附近看上去幾乎成了直線(xiàn)。事實(shí)上,如果繼續(xù)放大,那么曲線(xiàn)在點(diǎn)P附近將逼近一條確定的直線(xiàn),該直線(xiàn)是經(jīng)過(guò)點(diǎn)P的所有直線(xiàn)中最逼近曲線(xiàn)的一條直線(xiàn)。
因此,在點(diǎn)P附近我們可以用這條直線(xiàn)來(lái)代替曲線(xiàn),也就是說(shuō),點(diǎn)P附近,曲線(xiàn)可以看出直線(xiàn)(即在很小的范圍內(nèi)以直代曲)。
2、探究活動(dòng)。
如圖所示,直線(xiàn)l1,l2為經(jīng)過(guò)曲線(xiàn)上一點(diǎn)P的兩條直線(xiàn),
(1)試判斷哪一條直線(xiàn)在點(diǎn)P附近更加逼近曲線(xiàn);
(2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線(xiàn)的直線(xiàn)l3嗎?
(3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線(xiàn)的直線(xiàn)嗎?
二、建構(gòu)數(shù)學(xué)
切線(xiàn)定義: 如圖,設(shè)Q為曲線(xiàn)C上不同于P的一點(diǎn),直線(xiàn)PQ稱(chēng)為曲線(xiàn)的割線(xiàn)。 隨著點(diǎn)Q沿曲線(xiàn)C向點(diǎn)P運(yùn)動(dòng),割線(xiàn)PQ在點(diǎn)P附近逼近曲線(xiàn)C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線(xiàn)PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線(xiàn)的直線(xiàn)l,這條直線(xiàn)l也稱(chēng)為曲線(xiàn)在點(diǎn)P處的切線(xiàn)。這種方法叫割線(xiàn)逼近切線(xiàn)。
思考:如上圖,P為已知曲線(xiàn)C上的一點(diǎn),如何求出點(diǎn)P處的切線(xiàn)方程?
三、數(shù)學(xué)運(yùn)用
例1 試求在點(diǎn)(2,4)處的切線(xiàn)斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線(xiàn)PQ的斜率為:
當(dāng)Q沿曲線(xiàn)逼近點(diǎn)P時(shí),割線(xiàn)PQ逼近點(diǎn)P處的切線(xiàn),從而割線(xiàn)斜率逼近切線(xiàn)斜率;
當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。
從而曲線(xiàn)f(x)=x2在點(diǎn)(2,4)處的切線(xiàn)斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線(xiàn)PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線(xiàn)f(x)=x2,在點(diǎn)(2,4)處的切線(xiàn)斜率為4。
練習(xí) 試求在x=1處的切線(xiàn)斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線(xiàn)PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線(xiàn)f(x)=x2+1在x=1處的切線(xiàn)斜率為2。
小結(jié) 求曲線(xiàn)上一點(diǎn)處的切線(xiàn)斜率的一般步驟:
(1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);
(2)求出割線(xiàn)PQ的斜率;
(3)當(dāng)時(shí),割線(xiàn)逼近切線(xiàn),那么割線(xiàn)斜率逼近切線(xiàn)斜率。
思考 如上圖,P為已知曲線(xiàn)C上的一點(diǎn),如何求出點(diǎn)P處的切線(xiàn)方程?
解 設(shè)
所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線(xiàn)的斜率。
變式訓(xùn)練
1。已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程;
2。已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程;
3。已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程。
課堂練習(xí)
已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程。
四、回顧小結(jié)
1、曲線(xiàn)上一點(diǎn)P處的切線(xiàn)是過(guò)點(diǎn)P的所有直線(xiàn)中最接近P點(diǎn)附近曲線(xiàn)的直線(xiàn),則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線(xiàn)反映(局部以直代曲)。
2、根據(jù)定義,利用割線(xiàn)逼近切線(xiàn)的方法, 可以求出曲線(xiàn)在一點(diǎn)處的切線(xiàn)斜率和方程。
五、課外作業(yè)
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇4
一、教材
《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線(xiàn)和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線(xiàn)的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀(guān)點(diǎn)揭示了知識(shí)的發(fā)生過(guò)程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類(lèi)討論、類(lèi)比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過(guò)直線(xiàn)與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過(guò)程中掌握了點(diǎn)的坐標(biāo)、直線(xiàn)的方程、圓的方程以及點(diǎn)到直線(xiàn)的距離公式;掌握利用方程組的方法來(lái)求直線(xiàn)的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識(shí)與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線(xiàn)與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線(xiàn)的距離的方法簡(jiǎn)單判斷出直線(xiàn)與圓的關(guān)系。
(二)過(guò)程與方法目標(biāo)
經(jīng)歷操作、觀(guān)察、探索、總結(jié)直線(xiàn)與圓的位置關(guān)系的判斷方法,從而鍛煉觀(guān)察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價(jià)值觀(guān)目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線(xiàn)與圓的位置關(guān)系。
(二)難點(diǎn)
體會(huì)用解析法解決問(wèn)題的數(shù)學(xué)思想。
根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀(guān)、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺(tái),通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀(guān),為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問(wèn)題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。
六、教學(xué)過(guò)程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的1處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線(xiàn)與圓的位置關(guān)系,將所想到的航行路線(xiàn)轉(zhuǎn)化成數(shù)學(xué)簡(jiǎn)圖,即相交、相切、相離。
設(shè)計(jì)意圖:在已有的知識(shí)基礎(chǔ)上,提出新的問(wèn)題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問(wèn)如何判斷直線(xiàn)與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的贊賞,又要有對(duì)錯(cuò)誤見(jiàn)解的分析及對(duì)該學(xué)生的鼓勵(lì)。
判斷方法:
(1)定義法:看直線(xiàn)與圓公共點(diǎn)個(gè)數(shù)
即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線(xiàn)的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問(wèn),對(duì)比兩種方法,由學(xué)生觀(guān)察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線(xiàn)與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線(xiàn)3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當(dāng)已知了直線(xiàn)與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線(xiàn)的距離d,他的本質(zhì)是點(diǎn)到直線(xiàn)的距離,便可以直接利用點(diǎn)到直線(xiàn)的距離公式求d。類(lèi)比前面所學(xué)利用直線(xiàn)方程求兩直線(xiàn)交點(diǎn)的方法,聯(lián)立直線(xiàn)與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數(shù)確定直線(xiàn)與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來(lái)判斷:
當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線(xiàn)1與圓C相交;當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線(xiàn)1與圓C相切;當(dāng)方程組沒(méi)有實(shí)數(shù)解時(shí),直線(xiàn)1與圓C相離。
活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線(xiàn)與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會(huì)以口頭提問(wèn)的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?
設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡(jiǎn)捷,明確本節(jié)課主要用比較d與r的關(guān)系來(lái)解決這類(lèi)問(wèn)題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇5
一、教學(xué)目標(biāo)
1、在初中學(xué)過(guò)原命題、逆命題知識(shí)的基礎(chǔ)上,初步理解四種命題。
2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫(xiě)出它的逆命題、否命題和逆否命題。
3、通過(guò)對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力
4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。
二、教學(xué)分析
重點(diǎn):四種命題;
難點(diǎn):四種命題的關(guān)系
1、本小節(jié)首先從初中數(shù)學(xué)的命題知識(shí),給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識(shí),進(jìn)一步講解反證法。
2、教學(xué)時(shí),要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3、“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開(kāi)語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開(kāi)語(yǔ)句。對(duì)學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開(kāi)語(yǔ)句。
三、教學(xué)手段和方法
1、以故事形式入題
2、多媒體演示
四、教學(xué)過(guò)程
(一)引入:一個(gè)生活中有趣的與命題有關(guān)的笑話(huà):某人要請(qǐng)甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話(huà)說(shuō)“有事不能參加”主人聽(tīng)了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽(tīng)了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽(tīng)了大怒,拂袖即去。主人這時(shí)還沒(méi)意識(shí)到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請(qǐng)客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì)說(shuō)話(huà),但是你想過(guò)這里面所蘊(yùn)涵的數(shù)學(xué)思想嗎?通過(guò)這節(jié)課的學(xué)習(xí)我們就能揭開(kāi)它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!
設(shè)計(jì)意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣
(二)復(fù)習(xí)提問(wèn):
1.命題“同位角相等,兩直線(xiàn)平行”的條件與結(jié)論各是什么?
2.把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。
學(xué)生活動(dòng):
口答:
(1)若同位角相等,則兩直線(xiàn)平行;
(2)若一個(gè)四邊形是正方形,則它的四條邊相等.
設(shè)計(jì)意圖:通過(guò)復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
(三)新課講解:
1.命題“同位角相等,兩直線(xiàn)平行”的條件是“同位角相等”,結(jié)論是“兩直線(xiàn)平行”;如果把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題就是“兩直線(xiàn)平行,同位角相等”。也就是說(shuō),把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線(xiàn)平行”的條件與結(jié)論同時(shí)否定,就得到新命題“同位角不相等,兩直線(xiàn)不平行”,這個(gè)新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線(xiàn)平行”的條件與結(jié)論互相交換并同時(shí)否定,就得到新命題“兩直線(xiàn)不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
(五)課堂探究:“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
(六)課堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結(jié)論)
逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時(shí)否定)
2、四種命題的關(guān)系
(1).原命題為真,它的逆命題不一定為真。
(2).原命題為真,它的否命題不一定為真。
(3).原命題為真,它的逆否命題一定為真。
(七)回扣引入
分析引入中的笑話(huà),先討論,后總結(jié):現(xiàn)在我們來(lái)分析一下主人說(shuō)的四句話(huà):
第一句:“該來(lái)的沒(méi)來(lái)”其逆否命題是“不該來(lái)的來(lái)了”,甲認(rèn)為自己是不該來(lái)的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認(rèn)為自己該走,所以乙也走了。
第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認(rèn)為說(shuō)的是自己,所以丙也走了。
五、作業(yè)
1.設(shè)原命題是“若斷它們的真假.,則”,寫(xiě)出它的逆命題、否命題與逆否命題,并分別判。
2.設(shè)原命題是“當(dāng)時(shí),若,則”,寫(xiě)出它的逆命題、否定命與逆否命題,并分別判斷它們的真假。
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇6
教學(xué)目標(biāo):
(1)知識(shí)與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個(gè)特性,識(shí)記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語(yǔ)言、列舉法和描述法表示集合。
(2)過(guò)程與方法:從圓、線(xiàn)段的垂直平分線(xiàn)的定義引出“集合”一詞,通過(guò)探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個(gè)特性,探討元素與集合的關(guān)系,比較用自然語(yǔ)言、列舉法和描述法表示集合。
(3)情感態(tài)度與價(jià)值觀(guān):感受集合語(yǔ)言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語(yǔ)言描述問(wèn)題的習(xí)慣。
教學(xué)重難點(diǎn):
(1)重點(diǎn):了解集合的含義與表示、集合中元素的特性。
(2)難點(diǎn):區(qū)別集合與元素的概念及其相應(yīng)的符號(hào),理解集合與元素的關(guān)系,表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。
教學(xué)過(guò)程:
【問(wèn)題1】在初中我們已經(jīng)學(xué)習(xí)了圓、線(xiàn)段的垂直平分線(xiàn),大家回憶一下教材中是如何對(duì)它們進(jìn)行定義的?
[設(shè)計(jì)意圖]引出“集合”一詞。
【問(wèn)題2】同學(xué)們知道什么是集合嗎?請(qǐng)大家思考討論課本第2頁(yè)的思考題。
[設(shè)計(jì)意圖]探討并形成集合的含義。
【問(wèn)題3】請(qǐng)同學(xué)們舉出認(rèn)為是集合的例子。
[設(shè)計(jì)意圖]點(diǎn)評(píng)學(xué)生舉出的例子,剖析并強(qiáng)調(diào)集合中元素的三大特性:確定性、互異性、無(wú)序性。
【問(wèn)題4】同學(xué)們知道用什么來(lái)表示一個(gè)集合,一個(gè)元素嗎?集合與元素之間有怎樣的關(guān)系?
[設(shè)計(jì)意圖]區(qū)別表示集合與元素的的符號(hào),介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
【問(wèn)題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實(shí)數(shù)根”組成的集
[設(shè)計(jì)意圖]引出并介紹列舉法。
【問(wèn)題6】例1的講解。同學(xué)們能用列舉法表示不等式x-7<3的解集嗎?
【問(wèn)題7】例2的講解。請(qǐng)同學(xué)們思考課本第6頁(yè)的思考題。
[設(shè)計(jì)意圖]幫助學(xué)生在表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。
【問(wèn)題8】請(qǐng)同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習(xí)了那些內(nèi)容?有什么學(xué)習(xí)體會(huì)?
[設(shè)計(jì)意圖]學(xué)習(xí)小結(jié)。對(duì)本節(jié)課所學(xué)知識(shí)進(jìn)行回顧。布置作業(yè)。
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇7
一、單元教學(xué)內(nèi)容
(1)算法的基本概念
(2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)
(3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句
二、單元教學(xué)內(nèi)容分析
算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來(lái)越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力
三、單元教學(xué)課時(shí)安排:
1、算法的基本概念3課時(shí)
2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí)
3、算法的基本語(yǔ)句2課時(shí)
四、單元教學(xué)目標(biāo)分析
1、通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析體會(huì)算法的思想,了解算法的含義
2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。
3、經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。
4、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
1、重點(diǎn)
(1)理解算法的含義
(2)掌握算法的基本結(jié)構(gòu)
(3)會(huì)用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題
2、難點(diǎn)
(1)程序框圖
(2)變量與賦值
(3)循環(huán)結(jié)構(gòu)
(4)算法設(shè)計(jì)
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。
七、單元展開(kāi)方式與特點(diǎn)
1、展開(kāi)方式
自然語(yǔ)言→程序框圖→算法語(yǔ)句
2、特點(diǎn)
(1)螺旋上升分層遞進(jìn)
(2)整合滲透前呼后應(yīng)
(3)三線(xiàn)合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學(xué)過(guò)程分析
1、算法基本概念教學(xué)過(guò)程分析
對(duì)生活中的實(shí)際問(wèn)題通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì)算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。
2、算法的流程圖教學(xué)過(guò)程分析
對(duì)生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區(qū)別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。
3、基本算法語(yǔ)句教學(xué)過(guò)程分析
經(jīng)歷將具體生活中問(wèn)題的流程圖轉(zhuǎn)化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達(dá)算法,
4、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
九、單元評(píng)價(jià)設(shè)想
1、重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià)
關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過(guò)程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習(xí)過(guò)程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。
2、正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能
關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法
高中數(shù)學(xué)教學(xué)設(shè)計(jì)案例篇8
教學(xué)目標(biāo):
1.掌握基本事件的概念;
2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;
3.掌握古典概型的概率計(jì)算公式,并能計(jì)算有關(guān)隨機(jī)事件的概率。
教學(xué)重點(diǎn):
掌握古典概型這一模型。
教學(xué)難點(diǎn):
如何判斷一個(gè)實(shí)驗(yàn)是否為古典概型,如何將實(shí)際問(wèn)題轉(zhuǎn)化為古典概型問(wèn)題。
教學(xué)方法:
問(wèn)題教學(xué)、合作學(xué)習(xí)、講解法、多媒體輔助教學(xué)。
教學(xué)過(guò)程:
一、問(wèn)題情境
有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?
二、學(xué)生活動(dòng)
1.進(jìn)行大量重復(fù)試驗(yàn),用“抽到紅心”這一事件的頻率估計(jì)概率,發(fā)現(xiàn)工作量較大且不夠準(zhǔn)確;
2.(1)共有“抽到紅心1”“抽到紅心2”“抽到紅心3”“抽到黑桃4”“抽到黑桃5”5種情況,由于是任意抽取的,可以認(rèn)為出現(xiàn)這5種情況的可能性都相等;
(2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,這6種情況的可能性都相等;
三、建構(gòu)數(shù)學(xué)
1.介紹基本事件的概念,等可能基本事件的概念;
2.讓學(xué)生自己總結(jié)歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);
3.得出隨機(jī)事件發(fā)生的概率公式:
四、數(shù)學(xué)運(yùn)用
1.例題。
例1
有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)
探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗(yàn)為古典概型嗎?(為什么對(duì)球進(jìn)行編號(hào)?)
探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對(duì)嗎?
學(xué)生活動(dòng):
探究(1)如果不對(duì)球進(jìn)行編號(hào),一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機(jī)會(huì)要比“摸到兩黑”的機(jī)會(huì)大.記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),通過(guò)枚舉法發(fā)現(xiàn)有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同。
探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件。
例2
一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,則摸到的兩只球都是白球的概率是多少?
問(wèn)題:在運(yùn)用古典概型計(jì)算事件的概率時(shí)應(yīng)當(dāng)注意什么?
①判斷概率模型是否為古典概型。
②找出隨機(jī)事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。
教師示范并總結(jié)用古典概型計(jì)算隨機(jī)事件的概率的步驟。
例3
同時(shí)拋兩顆骰子,觀(guān)察向上的點(diǎn)數(shù),問(wèn):
(1)共有多少個(gè)不同的可能結(jié)果?
(2)點(diǎn)數(shù)之和是6的可能結(jié)果有多少種?
(3)點(diǎn)數(shù)之和是6的概率是多少?
問(wèn)題:如何準(zhǔn)確的寫(xiě)出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數(shù)?
問(wèn)題:點(diǎn)數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?
例4
甲、乙兩人作出拳游戲(錘子、剪刀、布),求:
(1)平局的概率;
(2)甲贏的概率;
(3)乙贏的概率.
設(shè)計(jì)意圖:進(jìn)一步提高學(xué)生對(duì)將實(shí)際問(wèn)題轉(zhuǎn)化為古典概型問(wèn)題的能力。
2.練習(xí).
(1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_(kāi)_______。
(2)在20瓶飲料中,有3瓶已過(guò)了保質(zhì)期,從中任取1瓶,取到已過(guò)保質(zhì)期的飲料的概率為_(kāi)_______。
(3)第103頁(yè)練習(xí)1,2。
(4)從1,2,3,…,9這9個(gè)數(shù)字中任取2個(gè)數(shù)。
①2個(gè)數(shù)字都是奇數(shù)的概率為_(kāi)________;
②2個(gè)數(shù)字之和為偶數(shù)的概率為_(kāi)_______。
五、要點(diǎn)歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.基本事件,古典概型的概念和特點(diǎn);
2.古典概型概率計(jì)算公式以及注意事項(xiàng)、