學(xué)習(xí)啦 > 論文大全 > 技術(shù)論文 > 生物芯片技術(shù)論文

生物芯片技術(shù)論文

時(shí)間: 家文952 分享

生物芯片技術(shù)論文

  生物芯片是便攜式生物化學(xué) 分析 器的核心技術(shù)。下面是小編精心推薦的生物芯片技術(shù)論文,希望你能有所感觸!

  生物芯片技術(shù)論文篇一

  生物芯片研究進(jìn)展

  摘要 生物芯片是便攜式生物化學(xué) 分析 器的核心技術(shù)。通過(guò)對(duì)微加工獲得的微米結(jié)構(gòu)作生物化學(xué)處理能使成千上萬(wàn)個(gè)與生命相關(guān)的信息集成在一塊厘米見(jiàn)方的芯片上。采用生物芯片可進(jìn)行生命 科學(xué) 和醫(yī)學(xué)中所涉及的各種生物化學(xué)反應(yīng),從而達(dá)到對(duì)基因、抗原和活體細(xì)胞等進(jìn)行測(cè)試分析的目的。生物芯片 發(fā)展 的最終目標(biāo)是將從樣品制備、化學(xué)反應(yīng)到檢測(cè)的整個(gè)生化分析過(guò)程集成化以獲得所謂的微型全分析系統(tǒng)(micro total analytical system)或稱縮微芯片實(shí)驗(yàn)室(laboratory on a chip)。生物芯片技術(shù)的出現(xiàn)將會(huì)給生命科學(xué)、醫(yī)學(xué)、化學(xué)、新藥開發(fā)、生物武器戰(zhàn)爭(zhēng)、司法鑒定、食品和環(huán)境衛(wèi)生監(jiān)督等領(lǐng)域帶來(lái)一場(chǎng)革命。本文闡述了生物芯片技術(shù)在加工制備、功能和 應(yīng)用 方面的近期 研究 進(jìn)展。

  關(guān)鍵詞:生物芯片,縮微芯片實(shí)驗(yàn)室,疾病診斷,基因表達(dá)

  人類基因組計(jì)劃的目標(biāo)是在2005年完成對(duì)30億個(gè)人體基因組DNA堿基的序列測(cè)定,現(xiàn)在通過(guò)使用更高級(jí)的毛細(xì)管陣列測(cè)序儀和商業(yè)操作,使該計(jì)劃有望提前完成。因此,人們現(xiàn)已開始利用人類基因組計(jì)劃中所發(fā)現(xiàn)的已知基因?qū)ζ涔δ苓M(jìn)行研究,亦即把已知基因的序列與功能聯(lián)系在一起的功能基因組學(xué)研究。另外,與疾病相關(guān)的研究已從研究疾病的起因向探索發(fā)病機(jī)理方面轉(zhuǎn)移,并從疾病診斷向疾病易感性研究轉(zhuǎn)移。由于所有上述這些研究都與DNA結(jié)構(gòu)、病理和生理等因素密切相關(guān),因此許多國(guó)家現(xiàn)已開始考慮在后基因組時(shí)期,研究人員是否能用有效的硬體技術(shù)來(lái)對(duì)如此龐大的DNA信息以及蛋白質(zhì)信息加以利用。為此,先后已有多種解決方案問(wèn)世,如DNA的質(zhì)譜分析法[1]、熒光單分子分析法[2]、陣列式毛細(xì)管電泳[3]、雜交分析[4]等。但到 目前 為止,在對(duì)DNA和蛋白質(zhì)進(jìn)行分析的各種技術(shù)中,發(fā)展最快和應(yīng)用前景最好看的技術(shù)當(dāng)數(shù)以生物芯片技術(shù)為基礎(chǔ)的親和結(jié)合分析、毛細(xì)管電泳分析法[5]和質(zhì)譜分析法。此外,在此基礎(chǔ)上,通過(guò)與采用生物芯片技術(shù)和樣品制備 方法 (芯片細(xì)胞分離技術(shù)[6]和生化反應(yīng)方法(如芯片免疫分析[7]和芯片核酸擴(kuò)增[8])相結(jié)合,許多研究機(jī)構(gòu)和 工業(yè) 界都已開始構(gòu)建所謂的縮微芯片實(shí)驗(yàn)室。建立縮微芯片實(shí)驗(yàn)室的最終目的是將生命科學(xué)研究中的許多不連續(xù)的分析過(guò)程,如樣品制備,化學(xué)反應(yīng)和分離檢測(cè)等,通過(guò)采用象集成電路制作過(guò)程中的半導(dǎo)體光刻加工那樣的縮微技術(shù),將其移植到芯片中并使其連續(xù)化和微型化。這些當(dāng)年將數(shù)間房屋大小的分離元件 計(jì)算 機(jī)縮微成現(xiàn)在只有書本大小的筆記本式計(jì)算機(jī)有異曲同工之效。用這些生物芯片所制作的具有不同用途的生化分析儀具有下述一些主要優(yōu)點(diǎn),即分析全過(guò)程自動(dòng)化、生產(chǎn)成本低、防污染(芯片系一次性使用)、分析速度可獲得成千上萬(wàn)倍的提高、同時(shí),所需樣品及化學(xué)藥品的量可獲得成百上千倍的減少、極高的多樣品處理能力、儀器體積小、重量輕、便于攜帶。這類儀器的出現(xiàn)將會(huì)給生命科學(xué)、醫(yī)學(xué)、化學(xué)、新藥開發(fā)、生物武器戰(zhàn)爭(zhēng)、司法鑒定、食品和環(huán)境衛(wèi)生監(jiān)督等領(lǐng)域帶來(lái)一場(chǎng)革命。因此,它已廣為各國(guó)學(xué)術(shù)界和工業(yè)界所矚目[9]。

  1 生物芯片的微加工制備

  生物芯片的加工借用的是微 電子 工業(yè)和其他加工工業(yè)中比較成熟的一些微細(xì)加工(microfabrication)工藝(如:光學(xué)掩模光刻技術(shù)、反應(yīng)離子刻蝕、微注入模塑和聚合膜澆注法),在玻璃、塑料、硅片等基底材料上加工出用于生物樣品分離、反應(yīng)的微米尺寸的微結(jié)構(gòu),如過(guò)濾器、反應(yīng)室、微泵、微閥門等微結(jié)構(gòu)。然后在微結(jié)構(gòu)上施加必要的表面化學(xué)處理,再在微結(jié)構(gòu)上進(jìn)行所需的生物化學(xué)反應(yīng)和分析。

  生物芯片中目前發(fā)展最快的要算親和結(jié)合芯片(包括DNA和蛋白質(zhì)微陣列芯片)。它的加工除了用到一些微加工工藝以外,還需要使用機(jī)器人技術(shù)。現(xiàn)在有四種比較典型的親和結(jié)合芯片加工方法。一種是Affymetrix公司開發(fā)出的光學(xué)光刻法與光化學(xué)合成法相結(jié)合的光引導(dǎo)原位合成法[10]。第二種方法是Incyte pharmaceutical公司所采用的化學(xué)噴射法,它的原理是將事先合成好的寡核苷酸探針噴射到芯片上指定的位置來(lái)制作DNA芯片的。第三種是斯坦福大學(xué)所使用的接觸式點(diǎn)涂法。該方法的實(shí)現(xiàn)是通過(guò)使用高速精密機(jī)械手所帶的移液頭與玻璃芯片表面接觸而將探針定位點(diǎn)滴到芯片上的[11]。第四種方法是通過(guò)使用四支分別裝有A、T、G、C核苷的壓電噴頭在芯片上作原位DNA探針合成的[12]。

  2 生物芯片舉例

  生物芯片是縮小了的生物化學(xué)分析器,通過(guò)芯片上微加工獲得的微米結(jié)構(gòu)和生物化學(xué)處理結(jié)合,便可將成千上萬(wàn)個(gè)與生命相關(guān)的信息集成在一塊厘米見(jiàn)方的芯片上。采用芯片可進(jìn)行生命科學(xué)和醫(yī)學(xué)中所涉及的各種生物化學(xué)反應(yīng),以達(dá)到對(duì)基因、抗原和活體細(xì)胞等進(jìn)行測(cè)試分析的目的。通過(guò)分析可得到大量具有生物學(xué)、醫(yī)學(xué)意義的信息。生物化學(xué)反應(yīng)和分析過(guò)程通常包括三個(gè)步驟:1,樣品制備;2,生物化學(xué)反應(yīng);3,檢測(cè)和數(shù)據(jù)分析處理。將其中一個(gè)步驟或幾個(gè)步驟微型化集成到一塊芯片上就能獲得具有特殊功能的生物芯片,例如用于樣品制備的細(xì)胞過(guò)濾器芯片和介電電泳芯片、用于基因突變檢測(cè)和基因表達(dá)的DNA微陣列芯片和用于藥物篩選的高通量微米反應(yīng)池芯片等?,F(xiàn)在,世界各國(guó)的科學(xué)家們正致力于將生化分析的全過(guò)程通過(guò)不同芯片的使用最后達(dá)到全部功能的集成,以實(shí)現(xiàn)所謂的微型全分析系統(tǒng)或縮微芯片實(shí)驗(yàn)室。使用縮微芯片實(shí)驗(yàn)室,人們可以在一個(gè)封閉的系統(tǒng)內(nèi)以很短的時(shí)間完成從原始樣品到獲取所需分析結(jié)果的全套操作。

  2.1 樣品制備芯片

  針對(duì)DNA分析,其制備過(guò)程通常要經(jīng)過(guò)細(xì)胞分離、破胞、脫蛋白等多方面的工作,最后得到純度足夠高的待檢DNA。目前在細(xì)胞分離方法上較突出的有過(guò)濾分離(根據(jù)生物顆粒的尺寸差異進(jìn)行分離)和介電電泳分離(利用在芯片上所施加的高頻非均勻電場(chǎng)使不同的細(xì)胞內(nèi)誘導(dǎo)出偶電極,導(dǎo)致細(xì)胞受不同的介電力作用,而從樣品中分離出來(lái))等;芯片中的破胞方法有芯片升溫破胞、變壓脈沖破胞,以及化學(xué)破胞等。在捕獲DNA方面,CephEid公司應(yīng)用濕法蝕刻和反應(yīng)離子蝕刻/等離子蝕刻等工藝在硅片上加工出含有5000個(gè)高200微米直徑20微米的具有細(xì)柱式結(jié)構(gòu)的DNA萃取芯片,專門用于DNA的萃取[13]。

  2.2 生物化學(xué)反應(yīng)芯片

  由于目前所用檢測(cè)儀器的靈敏度還不夠高,因此從樣品中提取的DNA在標(biāo)記和應(yīng)用前仍需用PCR這樣的擴(kuò)增復(fù)制技術(shù)復(fù)制幾十萬(wàn)乃至上百萬(wàn)個(gè)相同的DNA片段。

  目前,在芯片中進(jìn)行核酸擴(kuò)增反應(yīng)獲得成功的有賓夕法尼亞大學(xué)研究小組[8,14],美國(guó)勞倫斯-利物摩國(guó)家實(shí)驗(yàn)室[15]和Perkin-Elmer公司[16]。賓夕法尼亞大學(xué)研究小組所做的擴(kuò)增反應(yīng)都是在硅-玻璃芯片中進(jìn)行的,芯片的外部加熱和冷卻采用的是計(jì)算機(jī)控制的帕爾帖電-熱器。在對(duì)芯片表面進(jìn)行惰性處理后,亦即在硅片表面生長(zhǎng)一層2000埃的氧化硅之后,他們成功地在硅-玻璃芯片中完成了一系列不同的核酸擴(kuò)增反應(yīng),例如RT-PCR、LCR、多重PCR和DOP-PCR。由勞倫斯-利物摩國(guó)家實(shí)驗(yàn)室加工的硅芯片所采用的加熱方式是芯片內(nèi)置的薄膜多晶硅加熱套,其升降溫的速度很快。Perkin-Elmer公司的PCR反應(yīng)則是在塑料芯片上完成的。倫敦帝國(guó)理工大學(xué)的研究者研制了一種樣品可在不同溫度的恒溫區(qū)間內(nèi)連續(xù)流動(dòng)的PCR芯片[17]。上述所有工作都是用事先提純了的DNA或RNA作為擴(kuò)增反應(yīng)的底物來(lái)完成的。為了將樣品制備和擴(kuò)增反應(yīng)集成為一體,賓夕法尼亞大學(xué)研究小組最近成功地在壩式微過(guò)濾芯片中直接對(duì)分離所得的人白細(xì)胞通過(guò)升溫方式胞解后所釋放的DNA進(jìn)行了擴(kuò)增,這是世界上首例將樣品制備和擴(kuò)增反應(yīng)集成為一體的研究成果[14]。

  2.3 檢測(cè)芯片

  2.3.1 毛細(xì)管電泳芯片

  芯片毛細(xì)管電泳是1983年由杜邦公司的Pace開發(fā)出來(lái)的[18]。隨后,瑞士的Ciba-GEIgy公司和加拿大的Alberta大學(xué)合作利用玻璃芯片毛細(xì)管電泳完成了對(duì)寡核苷酸的分離[19]。首次用芯片毛陣列電泳檢測(cè)DNA突變和對(duì)DNA進(jìn)行測(cè)序的是由加利福尼亞大學(xué)伯格利分校Mathies領(lǐng)導(dǎo)的研究小組完成的[20,21]。通過(guò)在芯片上加上高壓直流電,他們?cè)诮鼉煞昼姷臅r(shí)間內(nèi)便完成了從118bp到1353bp的許多DNA片段的快速分離。此外,Mathies的小組與勞倫斯-利物摩國(guó)家實(shí)驗(yàn)室Nothrup的研究小組合作,報(bào)道了首例將核酸擴(kuò)增反應(yīng)與芯片毛細(xì)管電泳集成為一體所作的多重PCR檢測(cè)工作[22]。賓夕法尼亞大學(xué)Wilding的小組與Ramsey的小組一道用芯片毛細(xì)管電泳對(duì)芯片中擴(kuò)增得到的用于杜鑫-貝克肌萎縮診斷的多條DNA片段進(jìn)行分離也獲得了成功[14]。其他用 芯片毛細(xì)管電泳檢測(cè)突變的外國(guó)公司和學(xué)術(shù)機(jī)構(gòu)有Perkin-Elmer公司、Caliper technologies公司、Aclara biosciences公司和麻省理工等。

  2.3.2 DNA突變檢測(cè)芯片

  dNA之所以能進(jìn)行雜交是因?yàn)楹塑誂和T、G和C可同時(shí)以氫鍵結(jié)合互補(bǔ)成對(duì)。許多經(jīng)典的分子生物學(xué)方法如桑格DNA測(cè)序法和PCR等都是以此為基礎(chǔ)的。最近出現(xiàn)的幾項(xiàng)技術(shù),如用光刻掩膜技術(shù)作光引導(dǎo)原位DNA合成[23]、電子雜交技術(shù)[24]、高靈敏度激光掃描熒光檢測(cè)技術(shù)[25]等,使以雜交為基礎(chǔ)的應(yīng)用有了長(zhǎng)足的改善。最近的一些 英文 權(quán)威刊物對(duì)應(yīng)用芯片雜交技術(shù)檢測(cè)突變作了報(bào)道。Hacia等人采用由96000個(gè)寡核苷酸探針?biāo)M成的雜交芯片,完成了對(duì)遺傳性乳腺癌和卵巢腫瘤基因BRCA1中外顯子上的24個(gè)異合突變(單核苷突變多態(tài)性)的檢測(cè)。他們通過(guò)引入?yún)⒄招盘?hào)和被檢測(cè)信號(hào)之間的色差分析使得雜交的特異性和檢測(cè)靈敏度獲得了提高[26]。另外,Kozal等人用高密度HIV寡核苷酸探針芯片對(duì)HIV病株的多態(tài)性作了分析[27]。Cronin等人用固化有428個(gè)探針的芯片對(duì)導(dǎo)致肺部囊性纖維化的突變基因進(jìn)行了檢測(cè)[28]。用生物芯片作雜交突變檢測(cè)的美國(guó)公司有貝克曼儀器公司、Abbot laboratory、Affymetrix、Nanogen、Sarnoff、Genometrix、Vysis、Hyseq、Molecular dynamics等;英美學(xué)術(shù)機(jī)構(gòu)有賓夕法尼亞大學(xué)、貝勒醫(yī)學(xué)院、牛津大學(xué)、Whitehead institute for Biomedical Research,海軍研究室,Argonne國(guó)家實(shí)驗(yàn)室等。

  通過(guò)雜交分析DNA的另一應(yīng)用技術(shù)是重復(fù)測(cè)序。那么,重復(fù)測(cè)序是怎么工作的呢?首先,人們將長(zhǎng)度為8-20個(gè)核苷的探針合成并固定到指甲蓋大小的硅芯片或玻璃芯片上。當(dāng)含有與探針序列互補(bǔ)的DNA被置于聯(lián)有探針的芯片之后,固化探針就會(huì)通過(guò)與其序列互補(bǔ)的DNA片段雜交而結(jié)合[10]。通過(guò)使用帶有計(jì)算機(jī)的熒光檢測(cè)系統(tǒng)對(duì)“棋盤”每個(gè)格子上的熒光強(qiáng)弱及根據(jù)每個(gè)格子上已知探針的序列進(jìn)行分析與組合就可得知樣品DNA所含有的堿基序列。最近美國(guó)的Science雜志對(duì)應(yīng)用芯片雜交技術(shù)測(cè)序作了報(bào)道。Chee等人在一塊固化有135000個(gè)寡核苷酸探針(每個(gè)探針長(zhǎng)度為25個(gè)核苷)的硅芯片上對(duì)長(zhǎng)度為16.6kbp的整個(gè)人線粒體DNA作了序列重復(fù)測(cè)定。每個(gè)探針之間的空間間隔為35微米。測(cè)序精度為99%。另外Hacia還報(bào)道了一種微測(cè)序分析法(minisequencing-based assays)為檢測(cè)所有可能的堿基序列變化提供了強(qiáng)有力的手段。此方法中需要將不同顏色熒光染料標(biāo)記的四種ddNTP,加入到引物的酶促反應(yīng)中,微陣列上固化的寡核苷酸用作酶促反應(yīng)的引物,靶序列作為模板,可檢測(cè)到靶序列上的堿基變化。用生物芯片從事雜交測(cè)序的美國(guó)公司有Affymetrix和Hyseq[29]。

  2.3.3 用作基因表達(dá)分析的DNA芯片

  隨著人類基因組計(jì)劃的順序進(jìn)行,越來(lái)越多的能夠表達(dá)的人基因序列以及引發(fā)疾病和能預(yù)測(cè)疾病的各種突變正在為人們逐漸認(rèn)識(shí)。為了能夠同時(shí)對(duì)多個(gè)可能的遺傳突變進(jìn)行搜尋、加快功能基因組學(xué)研究的進(jìn)程,人們現(xiàn)已把越來(lái)越多的注意力放到了能同時(shí)提供有關(guān)多個(gè)基因及其序列信息的所謂并行分子遺傳學(xué)分析(parallel molecular genetic analysis)方法上。功能基因組學(xué)所研究的是在特定組織中、發(fā)育的不同階段或者是疾病的不同時(shí)期基因的表達(dá)情況。因此它的要求是要能在同一時(shí)刻獲得多個(gè)分子遺傳學(xué)分析的結(jié)果。譬如,許多疾病引發(fā)基因可能會(huì)有數(shù)以百計(jì)的與表征有關(guān)的特定突變,因而,要求能有同時(shí)篩檢這些突變的有效方法。另外,任何一個(gè)細(xì)胞中都會(huì)有上千個(gè)基因在表達(dá)。而細(xì)胞間基因表達(dá)的差異往往能反應(yīng)出這些細(xì)胞是發(fā)育正常還是在朝惡性腫瘤細(xì)胞方向發(fā)展。采用芯片技術(shù)利用雜交對(duì)基因表達(dá)進(jìn)行分析的好處是它能用很少的細(xì)胞物質(zhì)便能提供有關(guān)多基因差異表達(dá)的信息,從而給疾病診斷和藥物篩選提供前所未有的信息量[30]。Lockhart等人采用固化有65000個(gè)不同序列的長(zhǎng)度為20個(gè)核苷的探針芯片,定量地分析了一個(gè)小鼠T細(xì)胞線中整個(gè)RNA群體內(nèi)21個(gè)各不相同的信使RNA。這些專門設(shè)計(jì)的探針能與114個(gè)已知的小鼠基因雜交。分析發(fā)現(xiàn) 在誘發(fā)生成細(xì)胞分裂后,另外有20個(gè)信使RNA的表達(dá)也發(fā)生了改變。檢測(cè)結(jié)果表明該系統(tǒng)對(duì)RNA的檢出率為1:300000,對(duì)信使RNA的定量基準(zhǔn)為1:300[32]。Wang等人在研究表鬼臼毒素吡喃葡糖苷(etoposide)誘導(dǎo)的細(xì)胞程序性死亡時(shí),利用DNA芯片技術(shù),制備了一次可檢測(cè)6591種人細(xì)胞信使RNA的寡聚核苷酸微陣列,檢測(cè)到誘導(dǎo)后的細(xì)胞內(nèi)有62種信使RNA的量發(fā)生了變化。通過(guò)挑選12個(gè)與誘導(dǎo)作用有關(guān)的基因作進(jìn)一步研究,它們發(fā)現(xiàn)了2個(gè)新的p53靶基因[33]。DeRisi等人將一個(gè)惡性腫瘤細(xì)胞線中得到的870個(gè)不同的cDNA探針通過(guò)機(jī)械手“刷印”至載玻片上以觀察癌基因的表達(dá)情況。在比較兩個(gè)標(biāo)有不同熒光標(biāo)記的細(xì)胞信使RNA群的雜交結(jié)果之后,他們對(duì)引入正常人染色體后腫瘤基因受到抑制的細(xì)胞中的基因表達(dá)結(jié)果進(jìn)行了分析[34]。另外,Shoemaker等人報(bào)道了一種利用生物芯片來(lái)確定許多新近發(fā)現(xiàn)的酶母基因的生物功能的所謂分子條形編碼技術(shù)。這種技術(shù)的好處是它能讓我們以并行的方式定量地分析很復(fù)雜的核酸混合物[35]。Lueking等人最近采用蛋白質(zhì)微陣列技術(shù),把作為探針的蛋白質(zhì)高密度地固定在聚雙氟乙烯膜(polyvinylidene difluoride)上,并檢測(cè)到了10pg的微量蛋白質(zhì)測(cè)試樣。對(duì)92個(gè)人cDNA克隆片段表達(dá)的產(chǎn)物進(jìn)行檢測(cè),用單克隆技術(shù)作平行分析,證實(shí)了假陽(yáng)性的的檢出率低。由于蛋白質(zhì)微陣列技術(shù)不受限于抗原-抗體系統(tǒng),故能為高效篩選基因表達(dá)產(chǎn)物及研究受體-配體的相互作用提供一條新的有效途徑[36]。

  2.4 縮微芯片實(shí)驗(yàn)室

  生物芯片 發(fā)展 的最終目標(biāo)是將從樣品制備、化學(xué)反應(yīng)到檢測(cè)的整個(gè) 分析 過(guò)程集成化以獲得所謂的微型全分析系統(tǒng)或稱縮微芯片實(shí)驗(yàn)室。1998年6月,Nanogen公司的程京博士和他的同事們首次報(bào)道了用芯片實(shí)驗(yàn)室所實(shí)現(xiàn)的從樣品制備到反應(yīng)結(jié)果顯示的全部分析過(guò)程。他們用這個(gè)裝置從混有大腸桿菌的血液中成功地分離出了細(xì)菌,在高壓脈沖破胞之后用蛋白酶K孵化脫蛋白,制得純化的DNA,最后用另一塊 電子 增強(qiáng)的DNA雜交芯片分析證實(shí)提取物是大腸桿菌的DNA。這是向縮微實(shí)驗(yàn)室邁進(jìn)的一個(gè)成功的突破[37]。 目前 ,含有加熱器、微泵微閥、微流量控制器、電子化學(xué)和電子發(fā)光探測(cè)器的芯片已經(jīng)研制出來(lái)了,而且,也出現(xiàn)了將樣品制備、化學(xué)反應(yīng)和分析檢測(cè)部分結(jié)合的芯片(例如,樣品制備和PCR[38];競(jìng)爭(zhēng)免疫測(cè)定和毛細(xì)管電泳分離[39])。相信不久的將來(lái),包含所有步驟的縮微芯片實(shí)驗(yàn)室將不斷涌現(xiàn)。

  3 結(jié)尾

  經(jīng)過(guò)近十年的不懈努力,生物芯片技術(shù)發(fā)展至今已經(jīng)開始對(duì)生命 科學(xué) 研究 的許多領(lǐng)域帶來(lái)沖擊甚至革命。以美國(guó)為首的西方發(fā)達(dá)國(guó)家在該領(lǐng)域已經(jīng)取得了令人眩目的成就。到現(xiàn)在,從樣品制備、化學(xué)反應(yīng)到檢測(cè)的三個(gè)步驟已獲得了部分集成,三個(gè)部分的全部集成已初現(xiàn)端倪。 中國(guó) 在這方面尚未起步,如果各方面重視,投入一定的人力和物力,相信不久的將來(lái)在該領(lǐng)域中我們也會(huì)占有一席之地的。

  參考 文獻(xiàn)

  1 Koster H,et al.Nature Biotechnology,1996;14:1123-1128.

  2 Wilkerson CW,et al.Applied Physics Letter,1993;62:2030-232.

  3 Hang XC,et al.Analytical Chemistry,1992;64:2149-2154.

  4 Southern EM,et al.Trends in Genetics 1996;12:110-118.

  5 Pennisi E,Science 1996;272:1737.

  6 Kricka LJ,et al.Journal of International Federation of&nbs p;Clinical Chemistry1994;6:54-59.

  7 Kricka LJ,et al. Microfabricated Immunoassay Devices. In Principles & practice of Immunoassay (2ndEdition).Edited by Price CP and Newman DJ, Macmillan press,London,1996.

  8 Cheng J,et al.NuclEic Acids Research 1996;24:380-385.

  9 Manz A,Chimia 1996;50:140-143.

  10 Cheng J,Molecular Diagnosis 1996;1:183-200.

  11 Cheng J,et al.Sample preparation in microstructured devices, in Manz a,Bechar H.(eds)“Microsystem technology in Chemistry and life Scence”,a special volume in 12 Topics in current Chemistry Springer,HEIdelberg,1998;215-231.

  13 Markx G H,et al.Microbiology,1994;140:585-591.

  14 Northrup MA,et al.Proceedings of Transducers’95, the Eighth International conference on Solid-State Sensors and Actuators 1995;764-765.

  15 Cheng J,et al.Analytical Biochemistry 1998;257/2:101-106.

  nothrup MA,et al.Proceeding of the 8thInternational Conference on Solid-State Sensors and actuators, and Eurosensors IX, 1995; 764-767.

  16 Taylor TB, et al.Nucleic Acids Research 1997;25:3164-3168.

  17 Mrtin UK, et al.Science 1998;280:1046-1048.

  18 Pace SJ,US Patent 4,908,112,1990.

  19 Manz A,et al.J.Choromatogr,,1992;593:253-258.

  20 Wooley aT,et al.Proc.Natl.Acad.Sci.USA,1994;91:11348-11352.

  21 Woolley AT,et al.Anal.Chem,1997;68:4285-2186.

  22 Woolley AT,et al.Anal.Chem,1996;68:4081-4086.

  23 Fodor SPA ,et al.Science,1991;251:767-773.

  24 Sosnowski RG,et al.Proc.Natl.Acad.USA,1997;94:1119-1123.

  25 Kreiner t.,Rapid genetic sequence analysis using a DNA probe array system.Ame.Lab.,1996.

  26 Hacia JG,et al.Nature Genet,1996;14:441-447.

  27 Kozal MJ,et al.Nature Medicine,1996;2:753-759.

  28 Cronin MT,et al.Human Mutation,1996;7:244-255.

  29 Cheng J,et al.Molecular Diagnosis,1996;1:183-200.

  30 Hacia J G,Nature genetics supplement,1999;21:42-47.

  31 Scangos G,Nature Biotechnol,1997;15:1220-1221.

  32 Lockhart DJ,Nature Biotechnol,1996;14:1675-1680.

  33 Wang Y,et al.FEBS Letter,1999;445:269-273.

  34 DeRisi J,et al.Nature Genet,1996;14:457-460.

  35 Shoemaker DD, et al.Nature Genet, 1996;14:450-456.

  36 Lueking A, et al.Anal Biochem,1999;270:103-111.

  37 Cheng J,et al.Nature Biotechnology,1998;16:541-546.

  38 Wilding P,et al.Anal.Biochem,1998;257:95-100.

  3 9 McCormick RM,et al.Anal.Chem.1997;69:2626-2630

點(diǎn)擊下頁(yè)還有更多>>>生物芯片技術(shù)論文

2666420