層析成像技術(shù)論文
層析成象是在物體外部發(fā)射物理信號(hào),接收穿過物體且攜帶物體內(nèi)部信息,利用計(jì)算機(jī)圖象重建方法,重現(xiàn)物體內(nèi)部一維或三維清晰圖象。 下面是小編精心推薦的一些層析成像技術(shù)論文,希望你能有所感觸!
層析成像技術(shù)論文篇一
前言
層析成象是在物體外部發(fā)射物理信號(hào),接收穿過物體且攜帶物體內(nèi)部信息,利用計(jì)算機(jī)圖象重建方法,重現(xiàn)物體內(nèi)部一維或三維清晰圖象。 層析成象技術(shù)最大的特點(diǎn)是在不損壞物體的條件下,探知物體內(nèi)部結(jié)構(gòu)的幾何形態(tài)與物理參數(shù)(如密度等)的分布。層析成象與空間技術(shù)、遺傳工程、新粒子發(fā)現(xiàn)等同列為70年代國(guó)際上重大科技進(jìn)展。層析成像應(yīng)用非常廣泛,如醫(yī)學(xué)層析的核磁共振成像技術(shù)、工業(yè)方面的無損探傷、 在軍事工業(yè)中,層析成象用于對(duì)炮彈、火炮等做質(zhì)量檢查、在石油開發(fā)中被用于巖心分析和油管損傷檢測(cè)等,層析成象是在物體外部發(fā)射物理信號(hào),接收穿過物體且攜帶物體內(nèi)部信息,利用計(jì)算機(jī)圖象重建方法,重現(xiàn)物體內(nèi)部一維或三維清晰圖象。 聲波層析成像技術(shù)
聲波層析成像方法所研究的主要內(nèi)容,一個(gè)是正演問題,即射線的追蹤問題,是根據(jù)已知速度模型求波的初至?xí)r間的問題;另一個(gè)問題就是反演問題,即根據(jù)波的初至?xí)r間反求介質(zhì)內(nèi)部速度或者慢度分布的問題。層析成像效果的好壞與解正演問題的正演算法和解反演問題的反演算法都有直接的關(guān)系。 論文詳細(xì)研究聲波層析成像的射線追蹤算法,重點(diǎn)探討了基于Dijkstra算法的Moser曲射線追蹤算法,并用均勻介質(zhì)模型、空洞模型、低速斜斷層等模型使用Moser曲射線追蹤時(shí)的計(jì)算精度與計(jì)算效率,發(fā)現(xiàn)了內(nèi)插節(jié)點(diǎn)是影響Moser曲射線追蹤效果的主要因素,得到了內(nèi)插節(jié)點(diǎn)數(shù)為5~7之間,計(jì)算速度較快,計(jì)算精度較高。模型試算的結(jié)果表明,正演采用內(nèi)插10個(gè)節(jié)點(diǎn),
反演過程中采用內(nèi)插5個(gè)節(jié)點(diǎn),效果最佳。 在層析成像正演算法的基礎(chǔ)上,詳細(xì)研究了誤差反投影算法(BPT)、代數(shù)重建法(ART)、聯(lián)合迭代法(SIRT);研究了非線性問題線性化迭代的最速下降法、共軛梯度法(CG);重點(diǎn)推導(dǎo)和建立了層析成像的高斯—牛頓反演法(GN);詳細(xì)研究了非線性最優(yōu)化的蒙特卡洛法(MC)、模擬退火法(SA)、遺傳算法(GA);研究了將非線性全局最優(yōu)化和線性局部最優(yōu)化方法相結(jié)合的混合優(yōu)化方法,探討了基于高斯牛頓和模擬退火相結(jié)合(GN-SA)混合優(yōu)化算法。在此基礎(chǔ)上,以速度差為10%的低速斜斷層模型為例,詳細(xì)探討了線性化算法SIRT、GN;非線性最優(yōu)化算法SA、GA以及混合優(yōu)化算法GN-SA五種算法對(duì)該模型的計(jì)算結(jié)果,并探討了直射線和Moser曲射線追蹤的反演效果。數(shù)值試驗(yàn)表明,基于Moser曲射線追蹤的高斯—牛頓反演法的層析成像效果最佳,計(jì)算效率最高。 采用基于Moser曲射線追蹤的高斯—牛頓法,對(duì)速度差為25%的等軸狀空洞構(gòu)造、速度差為33%的不連通空洞模型、速度差為33%的高速巖脈進(jìn)行了反演試算,對(duì)于這些理論模型,高斯—牛頓法均取得了較好的成像效果。為進(jìn)一步驗(yàn)證各種層析成像法,在實(shí)驗(yàn)室制作了水泥臺(tái)和石膏板實(shí)物模型,并分別在水泥臺(tái)中央制作一個(gè)方形空洞,在石膏板中央制作一個(gè)倒“L”形空洞。對(duì)這兩個(gè)實(shí)物模型進(jìn)行了實(shí)測(cè),對(duì)測(cè)量的數(shù)據(jù),用高斯—牛頓法進(jìn)行層析成像反演,均取得了較好的成像效果。 通過本文的研究和數(shù)值試驗(yàn),得到了以下結(jié)論:(1)基于直射線追蹤方法,適用較為簡(jiǎn)單的地質(zhì)體,亦或是測(cè)量精度要求不高的問題。由于直射線追蹤方法在成像過程中,只需要追蹤一次就可以
求得距離矩陣,這樣它的成像速度比較快,而基于Moser曲射線追蹤的SIRT成像反演法,在迭代過程中,需要不斷地進(jìn)行距離矩陣的更新,計(jì)算速度相當(dāng)慢。因此,當(dāng)實(shí)際地質(zhì)情況比較簡(jiǎn)單時(shí)候,可以考慮先采用直射線方法進(jìn)行成像,然后采用曲射線追蹤進(jìn)行構(gòu)造精細(xì)解釋。(2)基于Moser曲射線的射線追蹤方法,追蹤效果與內(nèi)插節(jié)點(diǎn)的數(shù)目有較大的關(guān)系。(3)在Moser曲射線追蹤基礎(chǔ)上,結(jié)合SIRT層析成像反演方法,對(duì)正演模擬的旅行時(shí)間進(jìn)行了成像反演。當(dāng)速度差異小于15%時(shí),基于曲射線的SIRT層析成像反演結(jié)果與直射線情況下差異不大;當(dāng)速度差高達(dá)33%時(shí),基于直射線的SIRT層析成像方法對(duì)高速異常區(qū)的成像效果仍然比較好。但當(dāng)速度差異大于67%時(shí),基于直射線的SIRT成像效果比較差,但是基于Moser曲射線的追蹤方法,仍然可以給出比較好的成像效果。(4)基于Moser曲射線的高斯—牛頓反演層析成像方法,進(jìn)行了反演。(5)通過方法的比較,高斯牛頓法一般只需要迭代2~3次,就可以得到比較好的成像效果。而一般的SIRT成像方法,需要迭代10次左右才能得到比較好的成像效果。(6)理論模型的數(shù)值試驗(yàn)表明,盡管非線性最優(yōu)化方法在理論上可以收斂到全局最優(yōu)解,但是在實(shí)踐過程中,非線性最優(yōu)化算法SA、GA以及混合最優(yōu)化方法,目前仍然存在搜索次數(shù)太大,搜索時(shí)間過長(zhǎng)等弊病而無法實(shí)用。 這些理論模型和實(shí)測(cè)資料的反演結(jié)果,為建筑物構(gòu)件等的無損檢測(cè)提供了理論依據(jù)。
一.井間地震層析成像技術(shù)
井間地震層析成像技術(shù)是利用地震波在不同方向投射的波場(chǎng)信息, 對(duì)地下介質(zhì)內(nèi)部精細(xì)結(jié)構(gòu)(速度、衰減系數(shù)、反射系數(shù)等的分布)進(jìn)行成像, 以其分辨率高、解析成果直觀等特點(diǎn), 廣泛應(yīng)用于工業(yè)及 民用建筑、公路、鐵路、環(huán)境等方面工程地質(zhì)勘察中。井間層析成像可分為基于射線理論的走時(shí)層析成像和波動(dòng)理論的繞射層析成像兩類。井間地震波場(chǎng)信息豐富復(fù)雜, 波場(chǎng)識(shí)別和分離比較困難, 而直達(dá)波至相對(duì)簡(jiǎn)單, 故工程勘察中常常采用基于射線理論的直達(dá)波至走時(shí)層析成像。井間地震層析成像的核心問題是: 至波走時(shí)和線路徑計(jì)算, 即正演問題; 過不同的重建算法進(jìn)行成像、解釋即反演問題。筆者正演采用最短路徑法射線追蹤, 反演采用基于正交分解最小二乘法(簡(jiǎn)稱LSQR 算法)的反演算法。
1、 最短路徑法射線追蹤
它是基于Fermat最小旅行時(shí)原理和網(wǎng)絡(luò)理論中的最短路徑算法來實(shí)現(xiàn)。把地下介質(zhì)離散成若干小單元體, 并在各單元邊界上設(shè)置一些節(jié)點(diǎn), 地下速度模型就可表示成由這些節(jié)點(diǎn)以及它們之間的連線 所形成的網(wǎng)絡(luò)。網(wǎng)絡(luò)中的每一個(gè)節(jié)點(diǎn)只能與彼此相鄰的節(jié)點(diǎn)連接。相鄰節(jié)點(diǎn)之間的連接權(quán)等于地震波沿其連線傳播的旅行時(shí)。一條路徑是由相互連接的節(jié)點(diǎn)序列組成的, 沿著該路徑的旅行時(shí)為該路徑上所有連接權(quán)之和。從一個(gè)節(jié)點(diǎn)到另一個(gè)可能有無數(shù)條路徑, 按照Fermat原理, 把旅行時(shí)最小的路徑近似為地震波傳播通過的射線。網(wǎng)絡(luò)中, 速度場(chǎng)分布在離散的節(jié)點(diǎn)上。相鄰節(jié)點(diǎn)之間的旅行時(shí)為他們之間歐氏距離與其平均慢度之積。將波陣面看成是由有限個(gè)離散點(diǎn)次級(jí)源組成, 對(duì)于某個(gè)次級(jí)源(即某個(gè)網(wǎng)格節(jié)點(diǎn)) , 選取與其所有相鄰的點(diǎn)(鄰域點(diǎn))組成計(jì)算網(wǎng)格點(diǎn); 由一個(gè)源點(diǎn)出發(fā), 計(jì)算出從源點(diǎn)到計(jì)算網(wǎng)格點(diǎn)的透射走時(shí)、射線路徑和射線長(zhǎng)度; 然后把除震源之外的所有網(wǎng)格點(diǎn)相繼當(dāng)作次級(jí)源, 選取該源點(diǎn)相應(yīng)的計(jì)算網(wǎng)格點(diǎn),計(jì)算出從次級(jí)源點(diǎn)到計(jì)算網(wǎng)格點(diǎn)的透射走時(shí)、射線路徑和射線長(zhǎng)度; 將每次計(jì)算出來的走時(shí)加上從震源到次級(jí)源的走時(shí), 作為震源點(diǎn)到該網(wǎng)格節(jié)點(diǎn)的走時(shí), 記錄下相應(yīng)射線路徑位置及射線長(zhǎng)度。
2、層析成像的反演LSQR 算法
LSQR 方法是Pa ige 和Sanders在1982 年提出的, 它是利用Lanczos迭代法求解最小二乘問題的一種方法。LSQR 方法具有計(jì)算量小的優(yōu)點(diǎn), 并且能很容易地利用矩陣的稀疏性簡(jiǎn)化計(jì)算, 因而適合 求解大型稀疏問題。
LSQR 是目前層析成像中常用的方法, 在迭代過程中,它只涉及到非零元素, 占有用存儲(chǔ)空間少,運(yùn)算速度快, 運(yùn)算穩(wěn)定, 迭代次數(shù)少。
3、結(jié)論
(1)井間地震可以把震源和檢波器的排列直接布置在鉆孔中, 這可以使接收到的地震信號(hào)能保留更高頻率的有效成分, 為提高分辨率打下物理基礎(chǔ)。但是, 也正是由于震源和檢波器位置分布相對(duì)固定,且數(shù)目有限, 故獲得的不同角度的數(shù)據(jù)量有限, 不能夠像醫(yī)學(xué)CT 那樣獲得全方位的數(shù)據(jù), 這使得層析成像的解不唯一, 故進(jìn)行圖像解釋時(shí), 必須通過鉆孔資料加以約束。
(2)對(duì)規(guī)模較小的破碎帶、節(jié)理裂隙發(fā)育等結(jié)構(gòu)缺陷的低速異常體的探測(cè), 由于對(duì)地震波的走時(shí)影響較小, 不足以改變地震波的射線路徑, 則層析成像的分辨率依然達(dá)不到, 不能夠?qū)⑦@些低速異常體分辨出來。
(3)層析成像質(zhì)量不僅與異常體大小有關(guān), 還與孔間距及孔深與孔間距之比有關(guān), 外業(yè)數(shù)據(jù)采集質(zhì)量、拾取初至波走時(shí)誤差、反演算法亦對(duì)反演圖像解釋產(chǎn)生直接影響。
(4)為提高探測(cè)精度, 可嘗試?yán)肰SP和井間CT數(shù)據(jù)采集方式的相似性, 設(shè)置科學(xué)的野外觀測(cè)系統(tǒng), 同時(shí)開展工程VSP 與地震CT 聯(lián)合探測(cè)方法研究, 進(jìn)行聯(lián)合反演, 這也將是我們今后努力的方向。
結(jié)束語
層析成像方法在地球物理探測(cè)方面還有許多廣泛的應(yīng)用,這里我們就不一一討論。如何利用層析成像技術(shù)為地球物理探測(cè)技術(shù)的發(fā)展
做出貢獻(xiàn),是每個(gè)物探人應(yīng)該努力的方向。
點(diǎn)擊下頁還有更多>>>層析成像技術(shù)論文