學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高中勵(lì)志>

高三數(shù)學(xué)知識(shí)點(diǎn)梳理

時(shí)間: 舒淇4599 分享

高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒有社會(huì)經(jīng)驗(yàn)的學(xué)生來說,無疑是個(gè)困難的選擇。下面小編為大家?guī)?a href='http://regraff.com/xuexiff/gaosanshuxue/' target='_blank'>高三數(shù)學(xué)知識(shí)點(diǎn)梳理,希望對(duì)您有所幫助!

高三數(shù)學(xué)知識(shí)點(diǎn)梳理

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):

(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

3、直線方程

點(diǎn)斜式:

直線斜率k,且過點(diǎn)

注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

求函數(shù)的零點(diǎn):

(1)(代數(shù)法)求方程的實(shí)數(shù)根;

(2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù).

1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

高三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

1、圓柱體:

表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:

表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、正方體

a—邊長(zhǎng),S=6a2,V=a3

4、長(zhǎng)方體

a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc

5、棱柱

S—底面積h—高V=Sh

6、棱錐

S—底面積h—高V=Sh/3

7、棱臺(tái)

S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

8、擬柱體

S1—上底面積,S2—下底面積,S0—中截面積

h—高,V=h(S1+S2+4S0)/6

9、圓柱

r—底半徑,h—高,C—底面周長(zhǎng)

S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱

R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

11、直圓錐

r—底半徑h—高V=πr^2h/3

12、圓臺(tái)

r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

13、球

r—半徑d—直徑V=4/3πr^3=πd^3/6

14、球缺

h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

15、球臺(tái)

r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

16、圓環(huán)體

R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

V=2π2Rr2=π2Dd2/4

17、桶狀體

D—桶腹直徑d—桶底直徑h—桶高

V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

1598051