學(xué)習(xí)啦 > 實(shí)用范文 > 工作總結(jié) > 個(gè)人工作總結(jié) >

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間: 培滿0 分享

在學(xué)習(xí)中,是不是聽到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編精心整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來看看吧。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【篇1】

棱錐

棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。

棱錐的的性質(zhì):

(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

正棱錐

正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個(gè)特殊的直角三角形

esp:

a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【篇2】

冪函數(shù)的性質(zhì):

對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的`各自情況。

可以看到:

(1)所有的圖形都通過(1,1)這點(diǎn)。

(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

解題方法:換元法

解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡(jiǎn)單化,變得容易處理。

換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來?;蛘咦?yōu)槭煜さ男问?,把?fù)雜的計(jì)算和推證簡(jiǎn)化。

它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

練習(xí)題:

1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

(1)求f(log2x)的最小值及對(duì)應(yīng)的x值;

(2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]<f(1)< p="">

2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上的點(diǎn)。

(1)求實(shí)數(shù)k的值及函數(shù)f-1(x)的解析式;

(2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f-1(x+-3)-g(x)≥1恒成立,試求實(shí)數(shù)m的取值范圍。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【篇3】

一、函數(shù)的概念與表示

1、映射

(1)映射:設(shè)A、B是兩個(gè)集合,如果按照某種映射法則f,對(duì)于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對(duì)應(yīng),則這樣的對(duì)應(yīng)(包括集合A、B以及A到B的對(duì)應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

注意點(diǎn):(1)對(duì)映射定義的理解。(2)判斷一個(gè)對(duì)應(yīng)是映射的方法。一對(duì)多不是映射,多對(duì)一是映射

2、函數(shù)

構(gòu)成函數(shù)概念的三要素

①定義域②對(duì)應(yīng)法則③值域

兩個(gè)函數(shù)是同一個(gè)函數(shù)的條件:三要素有兩個(gè)相同

二、函數(shù)的解析式與定義域

1、求函數(shù)定義域的主要依據(jù):

(1)分式的分母不為零;

(2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

(3)對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

(4)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

三、函數(shù)的值域

1、求函數(shù)值域的方法

①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復(fù)合函數(shù);

②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

③判別式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫圖);

⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;

⑥圖象法:二次函數(shù)必畫草圖求其值域;

⑦利用對(duì)號(hào)函數(shù)

⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對(duì)值函數(shù)

四、函數(shù)的奇偶性

1、定義:設(shè)y=f(x),x∈A,如果對(duì)于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

如果對(duì)于任意∈A,都有,則稱y=f(x)為奇函數(shù)。

2、性質(zhì):

①y=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對(duì)稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱

②若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對(duì)稱]

3、奇偶性的判斷

①看定義域是否關(guān)于原點(diǎn)對(duì)稱②看f(x)與f(-x)的關(guān)系

五、函數(shù)的單調(diào)性

1、函數(shù)單調(diào)性的定義:

2、設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【篇4】

1、初中數(shù)學(xué)知識(shí)點(diǎn)口訣

人說幾何很困難,難點(diǎn)就在輔助線。

輔助線,如何添?把握定理和概念。

還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。

圖中有角平分線,可向兩邊作垂線。

角平分線平行線,等腰三角形來添。

線段垂直平分線,常向兩端把線連。

要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。

三角形中兩中點(diǎn),連接則成中位線。

三角形中有中線,延長(zhǎng)中線加一倍。

梯形里面作高線,平移一腰試試看。

等積式子比例換,尋找相似很關(guān)鍵。

直接證明有困難,等量代換少麻煩。

斜邊上面作高線,弦高公式是關(guān)鍵。

半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。

圓上若有一切線,切點(diǎn)圓心半徑連。

要想證明是切線,半徑垂線仔細(xì)辨。

是直徑,成半圓,想成直角徑連弦。

弧有中點(diǎn)圓心連,垂徑定理要記全。

圓周角邊兩條弦,直徑和弦端點(diǎn)連。

要想作個(gè)外接圓,各邊作出中垂線。

還要作個(gè)內(nèi)切圓,內(nèi)角平分線夢(mèng)園。

如果遇到相交圓,不要忘作公共弦。

若是添上連心線,切點(diǎn)肯定在上面。

輔助線,是虛線,畫圖注意勿改變。

假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。

基本作圖很關(guān)鍵,平時(shí)掌握要熟練。

解題還要多心眼,經(jīng)??偨Y(jié)方法顯。

切勿盲目亂添線,方法靈活應(yīng)多變。

分析綜合方法選,困難再多也會(huì)減。

虛心勤學(xué)加苦練,成績(jī)上升成直線。

2、初中數(shù)學(xué)知識(shí)點(diǎn)口訣

學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。

分散條件要集中,常要添加輔助線。

畏懼心理不要有,其次要把觀念變。

熟能生巧有規(guī)律,真知灼見靠實(shí)踐。

圖中已知有中線,倍長(zhǎng)中線把線連。

旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。

多條中線連中點(diǎn),便可得到中位線。

倘若知角平分線,既可兩邊作垂線。

也可沿線去翻折,全等圖形立呈現(xiàn)。

角分線若加垂線,等腰三角形可見。

角分線加平行線,等線段角位置變。

已知線段中垂線,連接兩端等線段。

輔助線必畫虛線,便與原圖聯(lián)系看。

3、有理數(shù)的加法運(yùn)算

同號(hào)兩數(shù)來相加,絕對(duì)值加不變號(hào)。

異號(hào)相加大減小,大數(shù)決定和符號(hào)。

互為相反數(shù)求和,結(jié)果是零須記好。

【注】“大”減“小”是指絕對(duì)值的大小。

4、有理數(shù)的減法運(yùn)算

減正等于加負(fù),減負(fù)等于加正。

有理數(shù)的乘法運(yùn)算符號(hào)法則

同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。

5、合并同類項(xiàng)

說起合并同類項(xiàng),法則千萬不能忘。

只求系數(shù)代數(shù)和,字母指數(shù)留原樣。

6、去、添括號(hào)法則

去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。

擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。

括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。

7、解方程

已知未知鬧分離,分離要靠移完成。

移加變減減變加,移乘變除除變乘。

8、平方差公式

兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。

積化和差變兩項(xiàng),完全平方不是它。

9、完全平方公式

二數(shù)和或差平方,展開式它共三項(xiàng)。

首平方與末平方,首末二倍中間放。

和的平方加聯(lián)結(jié),先減后加差平方。

10、完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先減后加差平方。

11、解一元一次方程

先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。

同類各項(xiàng)去合并,系數(shù)化“1”還沒好。

求得未知須檢驗(yàn),回代值等才上算。

12、解一元一次方程

先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。

系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。

13、因式分解與乘法

和差化積是乘法,乘法本身是運(yùn)算。

積化和差是分解,因式分解非運(yùn)算。

14、因式分解

兩式平方符號(hào)異,因式分解你別怕。

兩底和乘兩底差,分解結(jié)果就是它。

兩式平方符號(hào)同,底積2倍坐中央。

因式分解能與否,符號(hào)上面有文章。

同和異差先平方,還要加上正負(fù)號(hào)。

同正則正負(fù)就負(fù),異則需添冪符號(hào)。

15、因式分解

一提二套三分組,十字相乘也上數(shù)。

四種方法都不行,拆項(xiàng)添項(xiàng)去重組。

重組無望試求根,換元或者算余數(shù)。

多種方法靈活選,連乘結(jié)果是基礎(chǔ)。

同式相乘若出現(xiàn),乘方表示要記住。

【注】一提(提公因式)二套(套公式)

16、因式分解

一提二套三分組,叉乘求根也上數(shù)。

五種方法都不行,拆項(xiàng)添項(xiàng)去重組。

對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。

17、二次三項(xiàng)式的因式分解

先想完全平方式,十字相乘是其次。

兩種方法行不通,求根分解去嘗試。

18、比和比例

兩數(shù)相除也叫比,兩比相等叫比例。

外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。

分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。

同時(shí)交換內(nèi)外項(xiàng),便要稱其為反比。

前后項(xiàng)和比后項(xiàng),比值不變叫合比。

前后項(xiàng)差比后項(xiàng),組成比例是分比。

兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。

前項(xiàng)和比后項(xiàng)和,比值不變叫等比。

19、解比例

外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。

20、求比值

由已知去求比值,多種途徑可利用。

活用比例七性質(zhì),變量替換也走紅。

消元也是好辦法,殊途同歸會(huì)變通。

21、正比例與反比例

商定變量成正比,積定變量成反比。

22、正比例與反比例

變化過程商一定,兩個(gè)變量成正比。

變化過程積一定,兩個(gè)變量成反比。

23、判斷四數(shù)成比例

四數(shù)是否成比例,遞增遞減先排序。

兩端積等中間積,四數(shù)一定成比例。

24、判斷四式成比例

四式是否成比例,生或降冪先排序。

兩端積等中間積,四式便可成比例。

25、比例中項(xiàng)

成比例的四項(xiàng)中,外項(xiàng)相同會(huì)遇到。

有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。

比例中項(xiàng)很重要,多種場(chǎng)合會(huì)碰到。

成比例的四項(xiàng)中,外項(xiàng)相同有不少。

有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)出現(xiàn)了。

同數(shù)平方等異積,比例中項(xiàng)無處逃。

26、根式與無理式

表示方根代數(shù)式,都可稱其為根式。

根式異于無理式,被開方式無限制。

被開方式有字母,才能稱為無理式。

無理式都是根式,區(qū)分它們有標(biāo)志。

被開方式有字母,又可稱為無理式。

27、求定義域

求定義域有講究,四項(xiàng)原則須留意。

負(fù)數(shù)不能開平方,分母為零無意義。

指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。

限制條件不唯一,滿足多個(gè)不等式。

求定義域要過關(guān),四項(xiàng)原則須注意。

負(fù)數(shù)不能開平方,分母為零無意義。

分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。

限制條件不唯一,不等式組求解集。

28、解一元一次不等式

先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。

系數(shù)化“1”有講究,同乘除負(fù)要變向。

先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。

同類各項(xiàng)去合并,系數(shù)化“1”注意了。

同乘除正無防礙,同乘除負(fù)也變號(hào)。

29、解一元一次不等式組

大于頭來小于尾,大小不一中間找。

大大小小沒有解,四種情況全來了。

同向取兩邊,異向取中間。

中間無元素,無解便出現(xiàn)。

幼兒園小鬼當(dāng)家,(同小相對(duì)取較小)

敬老院以老為榮,(同大就要取較大)

軍營(yíng)里沒老沒少。(大小小大就是它)

大大小小解集空。(小小大大哪有哇)

30、解一元二次不等式

首先化成一般式,構(gòu)造函數(shù)第二站。

判別式值若非負(fù),曲線橫軸有交點(diǎn)。

A正開口它向上,大于零則取兩邊。

代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。

方程若無實(shí)數(shù)根,口上大零解為全。

小于零將沒有解,開口向下正相反。

31、用平方差公式因式分解

異號(hào)兩個(gè)平方項(xiàng),因式分解有辦法。

兩底和乘兩底差,分解結(jié)果就是它。

32、用完全平方公式因式分解

兩平方項(xiàng)在兩端,底積2倍在中部。

同正兩底和平方,全負(fù)和方相反數(shù)。

分成兩底差平方,方正倍積要為負(fù)。

兩邊為負(fù)中間正,底差平方相反數(shù)。

一平方又一平方,底積2倍在中路。

三正兩底和平方,全負(fù)和方相反數(shù)。

分成兩底差平方,兩端為正倍積負(fù)。

兩邊若負(fù)中間正,底差平方相反數(shù)。

33、用公式法解一元二次方程

要用公式解方程,首先化成一般式。

調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。

確定參數(shù)abc,計(jì)算方程判別式。

判別式值與零比,有無實(shí)根便得知。

有實(shí)根可套公式,沒有實(shí)根要告之。

34、用常規(guī)配方法解一元二次方程

左未右已先分離,二系化“1”是其次。

一系折半再平方,兩邊同加沒問題。

左邊分解右合并,直接開方去解題。

該種解法叫配方,解方程時(shí)多練習(xí)。

35、用間接配方法解一元二次方程

已知未知先分離,因式分解是其次。

調(diào)整系數(shù)等互反,和差積套恒等式。

完全平方等常數(shù),間接配方顯優(yōu)勢(shì)。

【注】恒等式

36、解一元二次方程

方程沒有一次項(xiàng),直接開方最理想。

如果缺少常數(shù)項(xiàng),因式分解沒商量。

b、c相等都為零,等根是零不要忘。

b、c同時(shí)不為零,因式分解或配方,

也可直接套公式,因題而異擇良方。

37、正比例函數(shù)的鑒別

判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。

一量表示另一量,是與否。

若有還要看取值,全體實(shí)數(shù)都要有。

正比例函數(shù)是否,辨別需分兩步走。

一量表示另一量,有沒有。

若有再去看取值,全體實(shí)數(shù)都需要。

區(qū)分正比例函數(shù),衡量可分兩步走。

一量表示另一量,是與否。

若有還要看取值,全體實(shí)數(shù)都要有。

38、正比例函數(shù)的圖象與性質(zhì)

正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。

K正一三負(fù)二四,變化趨勢(shì)記心間。

K正左低右邊高,同大同小向爬山。

K負(fù)左高右邊低,一大另小下山巒。

39、一次函數(shù)

一次函數(shù)圖直線,經(jīng)過點(diǎn)。

K正左低右邊高,越走越高向爬山。

K負(fù)左高右邊低,越來越低很明顯。

K稱斜率b截距,截距為零變正函。

40、反比例函數(shù)

反比函數(shù)雙曲線,經(jīng)過點(diǎn)。

K正一三負(fù)二四,兩軸是它漸近線。

K正左高右邊低,一三象限滑下山。

K負(fù)左低右邊高,二四象限如爬山。

41、二次函數(shù)

二次方程零換y,二次函數(shù)便出現(xiàn)。

全體實(shí)數(shù)定義域,圖像叫做拋物線。

拋物線有對(duì)稱軸,兩邊單調(diào)正相反。

A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。

頂點(diǎn)非高即最低。上低下高很顯眼。

如果要畫拋物線,平移也可去描點(diǎn),

提取配方定頂點(diǎn),兩條途徑再挑選。

列表描點(diǎn)后連線,平移規(guī)律記心間。

左加右減括號(hào)內(nèi),號(hào)外上加下要減。

二次方程零換y,就得到二次函數(shù)。

圖像叫做拋物線,定義域全體實(shí)數(shù)。

A定開口及大小,開口向上是正數(shù)。

絕對(duì)值大開口小,開口向下A負(fù)數(shù)。

拋物線有對(duì)稱軸,增減特性可看圖。

線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。

如果要畫拋物線,描點(diǎn)平移兩條路。

提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。

列表描點(diǎn)后連線,三點(diǎn)大致定全圖。

若要平移也不難,先畫基礎(chǔ)拋物線,

頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。

【注】基礎(chǔ)拋物線

42、直線、射線與線段

直線射線與線段,形狀相似有關(guān)聯(lián)。

直線長(zhǎng)短不確定,可向兩方無限延。

射線僅有一端點(diǎn),反向延長(zhǎng)成直線。

線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。

兩點(diǎn)定線是共性,組成圖形最常見。

43、角

一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

共線反向是平角,平角之半叫直角。

平角兩倍成周角,小于直角叫銳角。

直平之間是鈍角,平周之間叫優(yōu)角。

互余兩角和直角,和是平角互補(bǔ)角。

一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

平角反向且共線,平角之半叫直角。

平角兩倍成周角,小于直角叫銳角。

鈍角界于直平間,平周之間叫優(yōu)角。

和為直角叫互余,互為補(bǔ)角和平角。

44、證等積或比例線段

等積或比例線段,多種途徑可以證。

證等積要改等比,對(duì)照?qǐng)D形看特征。

共點(diǎn)共線線相交,平行截比把題證。

三點(diǎn)定型十分像,想法來把相似證。

圖形明顯不相似,等線段比替換證。

換后結(jié)論能成立,原來命題即得證。

實(shí)在不行用面積,射影角分線也成。

只要學(xué)習(xí)肯登攀,手腦并用無不勝。

45、解無理方程

一無一有各一邊,兩無也要放兩邊。

乘方根號(hào)無蹤跡,方程可解無負(fù)擔(dān)。

兩無一有相對(duì)難,兩次乘方也好辦。

特殊情況去換元,得解驗(yàn)根是必然。

46、解分式方程

先約后乘公分母,整式方程轉(zhuǎn)化出。

特殊情況可換元,去掉分母是出路。

求得解后要驗(yàn)根,原留增舍別含糊。

47、列方程解應(yīng)用題

列方程解應(yīng)用題,審設(shè)列解雙檢答。

審題弄清已未知,設(shè)元直間兩辦法。

列表畫圖造方程,解方程時(shí)守章法。

檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。

48、兩點(diǎn)間距離公式

同軸兩點(diǎn)求距離,大減小數(shù)就為之。

與軸等距兩個(gè)點(diǎn),間距求法亦如此。

平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。

差方相加開平方,距離公式要牢記。

49、矩形的判定

任意一個(gè)四邊形,三個(gè)直角成矩形;

對(duì)角線等互平分,四邊形它是矩形。

已知平行四邊形,一個(gè)直角叫矩形;

兩對(duì)角線若相等,理所當(dāng)然為矩形。

50、菱形的判定

任意一個(gè)四邊形,四邊相等成菱形;

四邊形的對(duì)角線,垂直互分是菱形。

已知平行四邊形,鄰邊相等叫菱形;

兩對(duì)角線若垂直,順理成章為菱形。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【篇5】

(一)數(shù)與代數(shù)

A、數(shù)與式:

1、有理數(shù)

有理數(shù):

①整數(shù)→正整數(shù)/0/負(fù)整數(shù)

②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

數(shù)軸:

①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。

②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

絕對(duì)值:

①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。

②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

有理數(shù)的運(yùn)算:

加法:

①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。

②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

③一個(gè)數(shù)與0相加不變。

減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

乘法:

①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

②任何數(shù)與0相乘得0。

③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。

除法:

①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

②0不能作除數(shù)。

乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

2、實(shí)數(shù)

無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)。

平方根:

①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。

③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

立方根:

①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

實(shí)數(shù):

②實(shí)數(shù)分有理數(shù)和無理數(shù)。

②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù)、倒數(shù)、絕對(duì)值的意義完全一樣。

③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

3、代數(shù)式

代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

合并同類項(xiàng):

①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。

②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

4、整式與分式

整式:

①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。

冪的運(yùn)算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN除法一樣。

整式的乘法:

①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:

①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

分式:

①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。

②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

分式的運(yùn)算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

加減法:

①同分母的分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:

①分母中含有未知數(shù)的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

B、方程與不等式

1、方程與方程組

一元一次方程:

①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高次數(shù)為2的方程

1)一元二次方程的二次函數(shù)的關(guān)系

已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對(duì)它也有很深的了解,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了。

2)一元二次方程的解法

二次函數(shù)有頂點(diǎn)式(-b/2a,(4ac-b2)/4a),這個(gè)頂點(diǎn)公式一定要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以它也有自己的一個(gè)解法,利用它可以求出所有的一元一次方程的解。

(1)配方法

利用配方,使方程變?yōu)橥耆椒焦?,再用直接開平方法去求出解。

配方法的步驟:

先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式。

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解。

分解因式法的步驟:

把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

(3)公式法

這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a公式法。

就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c。

4)韋達(dá)定理

利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在解題中很常用。

5)一元一次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:

I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

III當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;

2、不等式與不等式組

不等式:

①用符號(hào)>,=,<號(hào)連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。

③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。

④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

不等式的解集:

①能使不等式成立的未知數(shù)的值,叫做不等式的解。

②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

一元一次不等式組:

①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

一元一次不等式的符號(hào)方向:

在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。

在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,A+C>B+C

在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C

在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A__C>B__C(C>0)。

在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A__C<b__c(c<0)。< p="">

如果不等式乘以0,那么不等號(hào)改為等號(hào)。

所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

3、函數(shù)

變量:因變量,自變量。

在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

一次函數(shù)的圖象:

①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

②正比例函數(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。

③在一次函數(shù)中,當(dāng)K<0,B<o,則經(jīng)234象限;當(dāng)k<0,b>0時(shí),則經(jīng)124象限;當(dāng)K>0,B<0時(shí),則經(jīng)134象限;當(dāng)K>0,B>0時(shí),則經(jīng)123象限。

④當(dāng)K>0時(shí),Y值隨X值的增大而增大,當(dāng)X<0時(shí),Y的值隨X值的增大而減少。

(二)空間與圖形

A、圖形的認(rèn)識(shí)

1、點(diǎn),線,面

點(diǎn),線,面:

②圖形是由點(diǎn),線,面構(gòu)成的。

②面與面相交得線,線與線相交得點(diǎn)。

③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

展開與折疊:

①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。

②N棱柱就是底面圖形有N條邊的棱柱。

截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧、扇形:

①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個(gè)扇形。

2、角

線:

①線段有兩個(gè)端點(diǎn)。

②將線段向一個(gè)方向無限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。

②將線段的`兩端無限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。

④經(jīng)過兩點(diǎn)有且只有一條直線。

比較長(zhǎng)短:

①兩點(diǎn)之間的所有連線中,線段最短。

②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

角的度量與表示:

①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

②一度的1/60是一分,一分的1/60是一秒。

角的比較:

①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。

③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

平行:

①同一平面內(nèi),不相交的兩條直線叫做平行線。

②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

垂直:

①如果兩條直線相交成直角,那么這兩條直線互相垂直。

②互相垂直的兩條直線的交點(diǎn)叫做垂足。

③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后,一定要把線段穿出2點(diǎn)。

垂直平分線定理:

性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等。

判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上。

角平分線:把一個(gè)角平分的射線叫該角的角平分線。

定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)。

性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等。

判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上。

正方形:一組鄰邊相等的矩形是正方形。

性質(zhì)定理:正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。

判定定理:

1、對(duì)角線相等的菱形;

2、鄰邊相等的矩形。

3、相交線與平行線

角:

①如果兩個(gè)角的和是直角,那么稱和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱這兩個(gè)角互為補(bǔ)角。

②同角或等角的余角/補(bǔ)角相等。

③對(duì)頂角相等。

④同位角相等/內(nèi)錯(cuò)角相等/同旁內(nèi)角互補(bǔ),兩直線平行,反之亦然。

4、三角形

①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

③三角形任意兩邊之和大于第三邊。三角形任意兩邊之差小于第三邊。

④三角形三個(gè)內(nèi)角的和等于180度。

⑤三角形分銳角三角形/直角三角形/鈍角三角形。

⑤直角三角形的兩個(gè)銳角互余。

⑥三角形中一個(gè)內(nèi)角的角平分線與他的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做三角形的角平分線。

⑦三角形中,連接一個(gè)頂點(diǎn)與他對(duì)邊中點(diǎn)的線段叫做這個(gè)三角形的中線。

⑧三角形的三條角平分線交于一點(diǎn),三條中線交于一點(diǎn)。

⑨從三角形的一個(gè)頂點(diǎn)向他的對(duì)邊所在的直線作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高。

⑩三角形的三條高所在的直線交于一點(diǎn)。

圖形的全等:全等圖形的形狀和大小都相同。兩個(gè)能夠重合的圖形叫全等圖形。

全等三角形:

①全等三角形的對(duì)應(yīng)邊/角相等。

②條件:SSS、AAS、ASA、SAS、HL。

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,反之亦然。

5、四邊形

平行四邊形的性質(zhì):

①兩組對(duì)邊分別平行的四邊形叫做平行四邊形。

③平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫他的對(duì)角線。

④平行四邊形的對(duì)邊/對(duì)角相等。

④平行四邊形的對(duì)角線互相平分。

平行四邊形的判定條件:兩條對(duì)角線互相平分的四邊形、一組對(duì)邊平行且相等的四邊形、兩組對(duì)邊分別相等的四邊形/定義。

菱形:

①一組鄰邊相等的平行四邊形是菱形。

②領(lǐng)心的四條邊相等,兩條對(duì)角線互相垂直平分,每一組對(duì)角線平分一組對(duì)角。

③判定條件:定義/對(duì)角線互相垂直的平行四邊形/四條邊都相等的四邊形。

矩形與正方形:

①有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。

②矩形的對(duì)角線相等,四個(gè)角都是直角。

③對(duì)角線相等的平行四邊形是矩形。

④正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。⑤一組鄰邊相等的矩形是正方形。

梯形:

①一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫梯形。

②兩條腰相等的梯形叫等腰梯形。

③一條腰和底垂直的梯形叫做直角梯形。

④等腰梯形同一底上的兩個(gè)內(nèi)角相等,對(duì)角線星等,反之亦然。

多邊形:

①N邊形的內(nèi)角和等于(N-2)180度。

②多邊心內(nèi)角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做這個(gè)多邊形的外角,在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,他們的和叫做這個(gè)多邊形的內(nèi)角和(都等于360度)

平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。

中心對(duì)稱圖形:

①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做他的對(duì)稱中心。

②中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。

B、圖形與變換:

1、圖形的軸對(duì)稱

軸對(duì)稱:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。

軸對(duì)稱圖形:

①角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。

②線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。

③等腰三角形的“三線合一”。

軸對(duì)稱的性質(zhì):對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分,對(duì)應(yīng)線段/對(duì)應(yīng)角相等。

2、圖形的平移和旋轉(zhuǎn)

平移:

①在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

②經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。

旋轉(zhuǎn):

①在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

②經(jīng)過旋轉(zhuǎn),圖形商店每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

3、圖形的相似

如:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=……=M/N,那么A+C+…+M/B+D+…N=A/B。

黃金分割:點(diǎn)C把線段AB分成兩條線段AC與BC,如果AC/AB=BC/AC,那么稱線段AB被點(diǎn)C黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn),AC與AB的比叫做黃金比例【(根號(hào)5-1)/2】。

相似:

①各角對(duì)應(yīng)相等,各邊對(duì)應(yīng)成比例的兩個(gè)多邊形叫做相似多邊形。

②相似多邊形對(duì)應(yīng)邊的比叫做相似比。

相似三角形:

①三角對(duì)應(yīng)相等,三邊對(duì)應(yīng)成比例的兩個(gè)三角形叫做相似三角形。

②條件:AAA、SSS、SAS。

相似多邊形的性質(zhì):

①相似三角形對(duì)應(yīng)高,對(duì)應(yīng)角平分線,對(duì)應(yīng)中線的比都等于相似比。

②相似多邊形的周長(zhǎng)比等于相似比,面積比等于相似比的平方。

圖形的放大與縮小:

①如果兩個(gè)圖形不僅是相似圖形,而且每組對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,這時(shí)的相似比又稱為位似比。

②位似圖形上任意一對(duì)對(duì)應(yīng)點(diǎn)到位似中心的距離之比等于位似比。

C、圖形的坐標(biāo)

平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸與Y軸統(tǒng)稱坐標(biāo)軸,他們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。他們分4個(gè)象限。XA,YB記作(A,B)。

D、證明

定義與命題:

①對(duì)名稱與術(shù)語的含義加以描述,作出明確的規(guī)定,也就是給出他們的定義。

②對(duì)事情進(jìn)行判斷的句子叫做命題(分真命題與假命題)。

③每個(gè)命題是由條件和結(jié)論兩部分組成。

④要說明一個(gè)命題是假命題,通常舉出一個(gè)離子,使之具備命題的條件,而不具有命題的結(jié)論,這種例子叫做反例。

公理:

①公認(rèn)的真命題叫做公理。

②其他真命題的正確性都通過推理的方法證實(shí),經(jīng)過證明的真命題稱為定理。

③同位角相等,兩直線平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁內(nèi)角互補(bǔ),兩直線平行,反之亦然;內(nèi)錯(cuò)角相等,兩直線平行,反之亦然;三角形三個(gè)內(nèi)角的和等于180度;三角形的一個(gè)外交等于和他不相鄰的兩個(gè)內(nèi)角的和;三角心的一個(gè)外角大于任何一個(gè)和他不相鄰的內(nèi)角。

④由一個(gè)公理或定理直接推出的定理,叫做這個(gè)公理或定理的推論。

(三)統(tǒng)計(jì)與概率

1、統(tǒng)計(jì)

科學(xué)記數(shù)法:一個(gè)大于10的數(shù)可以表示成A__10N的形式,其中1小于等于A小于10,N是正整數(shù)。

扇形統(tǒng)計(jì)圖:

①用圓表示總體,圓中的各個(gè)扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。

②扇形統(tǒng)計(jì)圖中,每部分占總體的百分比等于該部分所對(duì)應(yīng)的扇形圓心角的度數(shù)與360度的比。

各類統(tǒng)計(jì)圖的優(yōu)劣:條形統(tǒng)計(jì)圖:能清楚表示出每個(gè)項(xiàng)目的具體數(shù)目;折線統(tǒng)計(jì)圖:能清楚反映事物的變化情況;扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。

近似數(shù)字和有效數(shù)字:

①測(cè)量的結(jié)果都是近似的。

③利用四舍五入法取一個(gè)數(shù)的近似數(shù)時(shí),四舍五入到哪一位,就說這個(gè)近似數(shù)精確到哪一位。

④對(duì)于一個(gè)近似數(shù),從左邊第一個(gè)不為0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字都叫做這個(gè)數(shù)的有效數(shù)字。

平均數(shù):對(duì)于N個(gè)數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個(gè)N個(gè)數(shù)的算術(shù)平均數(shù),記為X(X上邊一橫)。

加權(quán)平均數(shù):一組數(shù)據(jù)里各個(gè)數(shù)據(jù)的重要程度未必相同,因而,在計(jì)算這組數(shù)據(jù)的平均數(shù)時(shí)往往給每個(gè)數(shù)據(jù)加一個(gè)權(quán),這就是加權(quán)平均數(shù)。

中位數(shù)與眾數(shù):

①N個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

②一組數(shù)據(jù)中出現(xiàn)次數(shù)最大的那個(gè)數(shù)據(jù)叫做這個(gè)組數(shù)據(jù)的眾數(shù)。

③優(yōu)劣:平均數(shù):所有數(shù)據(jù)參加運(yùn)算,能充分利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中常用,但容易受極端值影響;中位數(shù):計(jì)算簡(jiǎn)單,受極端值影響少,但不能充分利用所有數(shù)據(jù)的信息;眾數(shù):各個(gè)數(shù)據(jù)如果重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別的意義。

調(diào)查:

①為了一定的目的而對(duì)考察對(duì)象進(jìn)行的全面調(diào)查,稱為普查,其中所要考察對(duì)象的全體稱為總體,而組成總體的每一個(gè)考察對(duì)象稱為個(gè)體。

②從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

③抽樣調(diào)查只考察總體中的一小部分個(gè)體,因此他的優(yōu)點(diǎn)是調(diào)查范圍小,節(jié)省時(shí)間,人力,物力和財(cái)力,但其調(diào)查結(jié)果往往不如普查得到的結(jié)果準(zhǔn)確。為了獲得較為準(zhǔn)確的調(diào)查結(jié)果,抽樣時(shí)要主要樣本的代表性和廣泛性。

頻數(shù)與頻率:

①每個(gè)對(duì)象出現(xiàn)的次數(shù)為頻數(shù),而每個(gè)對(duì)象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。

②當(dāng)收集的數(shù)據(jù)連續(xù)取值時(shí),我們通常先將數(shù)據(jù)適當(dāng)分組,然后再繪制頻數(shù)分布直方圖。

2、概率

可能性:

①有些事情我們能確定他一定會(huì)發(fā)生,這些事情稱為必然事件;有些事情我們能肯定他一定不會(huì)發(fā)生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。

②有很多事情我們無法肯定他會(huì)不會(huì)發(fā)生,這些事情稱為不確定事件。

③一般來說,不確定事件發(fā)生的可能性是有大小的。

概率:

①人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。

②游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。

③必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0<p(a)<1。< p="">

2250577